30,810 research outputs found

    A predictive 331331 model with A4A_{4} flavour symmetry

    Full text link
    We propose a predictive model based on the SU(3)C⊗SU(3)L⊗U(1)XSU(3)_{C}\otimes SU(3)_{L}\otimes U(1)_{X} gauge group supplemented by the A4⊗Z3⊗Z4⊗Z6⊗Z16A_{4}\otimes Z_{3}\otimes Z_{4}\otimes Z_{6}\otimes Z_{16} discrete group, which successfully describes the SM fermion mass and mixing pattern. The small active neutrino masses are generated via inverse seesaw mechanism with three very light Majorana neutrinos. The observed charged fermion mass hierarchy and quark mixing pattern are originated from the breaking of the Z4⊗Z6⊗Z16Z_{4}\otimes Z_{6}\otimes Z_{16} discrete group at very high scale. The obtained values for the physical observables for both quark and lepton sectors are in excellent agreement with the experimental data. The model predicts a vanishing leptonic Dirac CP violating phase as well as an effective Majorana neutrino mass parameter of neutrinoless double beta decay, with values mββ=m_{\beta \beta }= 2 and 48 meV for the normal and the inverted neutrino mass hierarchies, respectively.Comment: 20 pages. Final version published in Nuclear Physics

    Fermion mass and mixing pattern in a minimal T7 flavor 331 model

    Full text link
    We present a model based on the SU(3)C⊗SU(3)L⊗U(1)XSU(3)_{C}\otimes SU(3)_{L}\otimes U(1)_{X} gauge symmetry having an extra T7⊗Z2⊗Z3⊗Z14T_{7}\otimes Z_{2}\otimes Z_{3}\otimes Z_{14} flavor group, which successfully describes the observed SM fermion mass and mixing pattern. In this framework, the light active neutrino masses arise via double seesaw mechanism and the observed charged fermion mass and quark mixing hierarchy is a consequence of the Z2⊗Z3⊗Z14Z_{2}\otimes Z_{3}\otimes Z_{14} symmetry breaking at very high energy. In our minimal T7T_{7} flavor 331 model, the spectrum of neutrinos includes very light active neutrinos as well as heavy and very heavy sterile neutrinos. The model has in total 16 effective free parameters, which are fitted to reproduce the experimental values of the 18 physical observables in the quark and lepton sectors. The obtained physical observables for both quark and lepton sectors are compatible with their experimental values. The model predicts the effective Majorana neutrino mass parameter of neutrinoless double beta decay to be % m_{\beta \beta }= 3 and 40 meV for the normal and the inverted neutrino spectrum, respectively. Furthermore, our model features a vanishing leptonic Dirac CP violating phase.Comment: 18 pages. Final version. To be published in Journal of Physics G. arXiv admin note: substantial text overlap with arXiv:1309.656

    MHD Remote Numerical Simulations: Evolution of Coronal Mass Ejections

    Full text link
    Coronal mass ejections (CMEs) are solar eruptions into interplanetary space of as much as a few billion tons of plasma, with embedded magnetic fields from the Sun's corona. These perturbations play a very important role in solar--terrestrial relations, in particular in the spaceweather. In this work we present some preliminary results of the software development at the Universidad Nacional Autonoma de Mexico to perform Remote MHD Numerical Simulations. This is done to study the evolution of the CMEs in the interplanetary medium through a Web-based interface and the results are store into a database. The new astrophysical computational tool is called the Mexican Virtual Solar Observatory (MVSO) and is aimed to create theoretical models that may be helpful in the interpretation of observational solar data.Comment: 2 pages, 1 color figure. To appear in Proceedings IAU Symposium No. 259. Cosmic Magnetic Fields: From Planets, to Stars and Galaxies. In pres
    • …
    corecore