209 research outputs found

    A Kelvin-wave cascade on a vortex in superfluid 4^4He at a very low temperature

    Full text link
    A study by computer simulation is reported of the behaviour of a quantized vortex line at a very low temperature when there is continuous excitation of low-frequency Kelvin waves. There is no dissipation except by phonon radiation at a very high frequency. It is shown that non-linear coupling leads to a net flow of energy to higher wavenumbers and to the development of a simple spectrum of Kelvin waves that is insensitive to the strength and frequency of the exciting drive. The results are likely to be relevant to the decay of turbulence in superfluid 4^4He at very low temperatures

    Localized induction equation and pseudospherical surfaces

    Full text link
    We describe a close connection between the localized induction equation hierarchy of integrable evolution equations on space curves, and surfaces of constant negative Gauss curvature.Comment: 21 pages, AMSTeX file. To appear in Journal of Physics A: Mathematical and Genera

    Slow flows of an relativistic perfect fluid in a static gravitational field

    Full text link
    Relativistic hydrodynamics of an isentropic fluid in a gravitational field is considered as the particular example from the family of Lagrangian hydrodynamic-type systems which possess an infinite set of integrals of motion due to the symmetry of Lagrangian with respect to relabeling of fluid particle labels. Flows with fixed topology of the vorticity are investigated in quasi-static regime, when deviations of the space-time metric and the density of fluid from the corresponding equilibrium configuration are negligibly small. On the base of the variational principle for frozen-in vortex lines dynamics, the equation of motion for a thin relativistic vortex filament is derived in the local induction approximation.Comment: 4 pages, revtex, no figur

    Hamiltonians for curves

    Full text link
    We examine the equilibrium conditions of a curve in space when a local energy penalty is associated with its extrinsic geometrical state characterized by its curvature and torsion. To do this we tailor the theory of deformations to the Frenet-Serret frame of the curve. The Euler-Lagrange equations describing equilibrium are obtained; Noether's theorem is exploited to identify the constants of integration of these equations as the Casimirs of the euclidean group in three dimensions. While this system appears not to be integrable in general, it {\it is} in various limits of interest. Let the energy density be given as some function of the curvature and torsion, f(κ,τ)f(\kappa,\tau). If ff is a linear function of either of its arguments but otherwise arbitrary, we claim that the first integral associated with rotational invariance permits the torsion τ\tau to be expressed as the solution of an algebraic equation in terms of the bending curvature, κ\kappa. The first integral associated with translational invariance can then be cast as a quadrature for κ\kappa or for τ\tau.Comment: 17 page

    The hodograph method applicability in the problem of long-scale nonlinear dynamics of a thin vortex filament near a flat boundary

    Get PDF
    Hamiltonian dynamics of a thin vortex filament in ideal incompressible fluid near a flat fixed boundary is considered at the conditions that at any point of the curve determining shape of the filament the angle between tangent vector and the boundary plane is small, also the distance from a point on the curve to the plane is small in comparison with the curvature radius. The dynamics is shown to be effectively described by a nonlinear system of two (1+1)-dimensional partial differential equations. The hodograph transformation reduces that system to a single linear differential equation of the second order with separable variables. Simple solutions of the linear equation are investigated at real values of spectral parameter λ\lambda when the filament projection on the boundary plane has shape of a two-branch spiral or a smoothed angle, depending on the sign of λ\lambda.Comment: 9 pages, revtex4, 6 eps-figure

    Integrable generalizations of Schrodinger maps and Heisenberg spin models from Hamiltonian flows of curves and surfaces

    Full text link
    A moving frame formulation of non-stretching geometric curve flows in Euclidean space is used to derive a 1+1 dimensional hierarchy of integrable SO(3)-invariant vector models containing the Heisenberg ferromagnetic spin model as well as a model given by a spin-vector version of the mKdV equation. These models describe a geometric realization of the NLS hierarchy of soliton equations whose bi-Hamiltonian structure is shown to be encoded in the Frenet equations of the moving frame. This derivation yields an explicit bi-Hamiltonian structure, recursion operator, and constants of motion for each model in the hierarchy. A generalization of these results to geometric surface flows is presented, where the surfaces are non-stretching in one direction while stretching in all transverse directions. Through the Frenet equations of a moving frame, such surface flows are shown to encode a hierarchy of 2+1 dimensional integrable SO(3)-invariant vector models, along with their bi-Hamiltonian structure, recursion operator, and constants of motion, describing a geometric realization of 2+1 dimensional bi-Hamiltonian NLS and mKdV soliton equations. Based on the well-known equivalence between the Heisenberg model and the Schrodinger map equation in 1+1 dimensions, a geometrical formulation of these hierarchies of 1+1 and 2+1 vector models is given in terms of dynamical maps into the 2-sphere. In particular, this formulation yields a new integrable generalization of the Schrodinger map equation in 2+1 dimensions as well as a mKdV analog of this map equation corresponding to the mKdV spin model in 1+1 and 2+1 dimensions.Comment: Published version with typos corrected. Significantly expanded version of a talk given by the first author at the 2008 BIRS workshop on "Geometric Flows in Mathematics and Physics

    Interaction of Nonlinear Schr\"odinger Solitons with an External Potential

    Full text link
    Employing a particularly suitable higher order symplectic integration algorithm, we integrate the 1-dd nonlinear Schr\"odinger equation numerically for solitons moving in external potentials. In particular, we study the scattering off an interface separating two regions of constant potential. We find that the soliton can break up into two solitons, eventually accompanied by radiation of non-solitary waves. Reflection coefficients and inelasticities are computed as functions of the height of the potential step and of its steepness.Comment: 14 pages, uuencoded PS-file including 10 figure

    Electromigration-Induced Propagation of Nonlinear Surface Waves

    Full text link
    Due to the effects of surface electromigration, waves can propagate over the free surface of a current-carrying metallic or semiconducting film of thickness h_0. In this paper, waves of finite amplitude, and slow modulations of these waves, are studied. Periodic wave trains of finite amplitude are found, as well as their dispersion relation. If the film material is isotropic, a wave train with wavelength lambda is unstable if lambda/h_0 < 3.9027..., and is otherwise marginally stable. The equation of motion for slow modulations of a finite amplitude, periodic wave train is shown to be the nonlinear Schrodinger equation. As a result, envelope solitons can travel over the film's surface.Comment: 13 pages, 2 figures. To appear in Phys. Rev.

    Stationary solutions of the one-dimensional nonlinear Schroedinger equation: II. Case of attractive nonlinearity

    Full text link
    All stationary solutions to the one-dimensional nonlinear Schroedinger equation under box or periodic boundary conditions are presented in analytic form for the case of attractive nonlinearity. A companion paper has treated the repulsive case. Our solutions take the form of bounded, quantized, stationary trains of bright solitons. Among them are two uniquely nonlinear classes of nodeless solutions, whose properties and physical meaning are discussed in detail. The full set of symmetry-breaking stationary states are described by the CnC_{n} character tables from the theory of point groups. We make experimental predictions for the Bose-Einstein condensate and show that, though these are the analog of some of the simplest problems in linear quantum mechanics, nonlinearity introduces new and surprising phenomena.Comment: 11 pages, 9 figures -- revised versio

    Superfluid Flow Past an Array of Scatterers

    Full text link
    We consider a model of nonlinear superfluid flow past a periodic array of point-like scatterers in one dimension. An application of this model is the determination of the critical current of a Josephson array in a regime appropriate to a Ginzburg-Landau formulation. Here, the array consists of short normal-metal regions, in the presence of a Hartree electron-electron interaction, and embedded within a one-dimensional superconducting wire near its critical temperature, TcTc. We predict the critical current to depend linearly as A(Tc−T)A (Tc-T), while the coefficient AA depends sensitively on the sizes of the superconducting and normal-metal regions and the strength and sign of the Hartree interaction. In the case of an attractive interaction, we find a further feature: the critical current vanishes linearly at some temperature T∗T* less than TcTc, as well as at TcTc itself. We rule out a simple explanation for the zero value of the critical current, at this temperature T∗T*, in terms of order parameter fluctuations at low frequencies.Comment: 23 pages, REVTEX, six eps-figures included; submitted to PR
    • …
    corecore