660 research outputs found

    O(\alpha_s^2) Corrections to Top Quark Production at e+e−e^+e^- Colliders

    Full text link
    In this article we evaluate mass corrections up to O((m2/q2)6)O((m^2/q^2)^6) to the three-loop polarization function induced by an axial-vector current. Special emphasis is put on the evaluation of the singlet diagram which is absent in the vector case. As a physical application O(αs2)O(\alpha_s^2) corrections to the production of top quarks at future e+e−e^+e^- colliders is considered. It is demonstrated that for center of mass energies s> 500\sqrt{s} >~ 500 GeV the inclusion of the first seven terms into the cross section leads to a reliable description.Comment: LaTeX, 13 pages, 10 figures included as ps-files. The complete paper, including figures, is also available via anonymous ftp at ftp://ttpux2.physik.uni-karlsruhe.de/ , or via www at http://www-ttp.physik.uni-karlsruhe.de/cgi-bin/preprints

    Towards Higgs boson production in gluon fusion to NNLO in the MSSM

    Full text link
    We consider the Higgs boson production in the gluon-fusion channel to next-to-next-to-leading order within the Minimal Supersymmetric Standard Model. In particular, we present analytical results for the matching coefficient of the effective theory and study its influence on the total production cross section in the limit where the masses of all MSSM particles coincide. For supersymmetric masses below 500 GeV it is possible to find parameters leading to a significant enhancement of the Standard Model cross section, the KK-factors, however, change only marginally.Comment: 20 pages; v2: modification of discussion of numerical effect, version to appear in EPJC; v3: eq.(18) corrected, minor correction

    Complete Corrections of O(\alpha\alpha_s) to the Decay of the Z Boson into Bottom Quarks

    Full text link
    For the vertex corrections to the partial decay rate Γ(Z→bbˉ)\Gamma(Z \to b\bar{b}) involving the top quark only the leading terms of order ααs\alpha\alpha_s in the 1/Mt1/M_t expansion are known. In this work we compute the missing next-to-leading corrections. Thus at O(ααs)O(\alpha\alpha_s) the complete corrections to the decay of the Z boson into bottom quarks are at hand.Comment: Latex, 11 pages, 1 figure included as ps-file. Two references changed. The complete paper is also available via anonymous ftp at ftp://ttpux2.physik.uni-karlsruhe.de/ttp97/ttp97-52/ or via www at http://www-ttp.physik.uni-karlsruhe.de/cgi-bin/preprints

    The four-loop DRED gauge beta-function and fermion mass anomalous dimension for general gauge groups

    Full text link
    We present four-loop results for the gauge beta-function and the fermion mass anomalous dimension for a gauge theory with a general gauge group and a multiplet of fermions transforming according to an arbitrary representation, calculated using the dimensional reduction scheme. In the special case of a supersymmetric theory we confirm previous calculations of both the gauge beta-function and the gaugino mass beta-function.Comment: 44 pages, added references (v2) minor changes (v3

    On the NLO QCD corrections to the production of the heaviest neutral Higgs scalar in the MSSM

    Full text link
    We present a calculation of the two-loop top-stop-gluino contributions to Higgs production via gluon fusion in the MSSM. By means of an asymptotic expansion in the heavy particle masses, we obtain explicit and compact analytic formulae that are valid when the Higgs and the top quark are lighter than stops and gluino, without assuming a specific hierarchy between the Higgs mass and the top mass. Being applicable to the heaviest Higgs scalar in a significant region of the MSSM parameter space, our results complement earlier ones obtained with a Taylor expansion in the Higgs mass, and can be easily implemented in computer codes to provide an efficient and accurate determination of the Higgs production cross section.Comment: 18 pages, 4 figure

    Running mass of the b-quark in QCD and SUSY QCD

    Full text link
    The running mass of the b-quark defined in DRbar-scheme is one of the important parameters of SUSY QCD. To find its value it should be related to some known experimental input. In this paper the b-quark running mass defined in nonsupersymmetric QCD is chosen for determination of corresponding parameter in SUSY QCD. The relation between these two quantities is found by considering five-flavor QCD as an effective theory obtained from its supersymmetric extension. A numerical analysis of the calculated two-loop relation and its impact on the MSSM spectrum is discussed. Since for nonsupersymmetric models MSbar-scheme is more natural than DRbar, we also propose a new procedure that allows one to calculate relations between MSbar- and DRbar-parameters. Unphysical epsilon-scalars that give rise to the difference between mentioned schemes are assumed to be heavy and decoupled in the same way as physical degrees of freedom. By means of this method it is possible to ``catch two rabbits'', i.e., decouple heavy particles and turn from DRbar to MSbar, at the same time. Explicit two-loop example of DRbar -> MSbar transition is given in the context of QCD. The advantages and disadvantages of the method are briefly discussed.Comment: 33 pages, 6 figures, 1 table, typos corrected, added references

    Two-loop matching coefficients for the strong coupling in the MSSM

    Full text link
    When relating the strong coupling αs\alpha_s, measured at the scale of the ZZ boson mass, to its numerical value at some higher energy, for example the scale of Grand Unification, it is important to include higher order corrections both in the running of αs\alpha_s and the decoupling of the heavy particles. We compute the two-loop matching coefficients for αs\alpha_s within the Minimal Supersymmetric Standard Model (MSSM) which are necessary for a consistent three-loop evolution of the strong coupling constant. Different scenarios for the hierarchy of the supersymmetric scales are considered and the numerical effects are discussed. We find that the three-loop effects can be as large as and sometimes even larger than the uncertainty induced by the current experimental accuracy of αs(MZ)\alpha_s(M_Z).Comment: 22 pages, 8 figures (13 ps/eps-files
    • …
    corecore