1,650 research outputs found

    Groundwater compartmentalisation: a water table height and geochemical analysis of the structural controls on the subdivision of a major aquifer, the Sherwood Sandstone, Merseyside, UK

    No full text
    International audienceCompartmentalisation, the subdivision of an aquifer into discrete and relatively isolated units, may be of critical importance for the protection of groundwater although it has been largely ignored in the groundwater literature. The Lower Triassic Sherwood Sandstone, in north west of England, UK, may be a good example of an aquifer that has been compartmentalised by numerous high angle faults with displacements of up to 300 m. The study was initiated to assess the local groundwater flow, the extent of seawater invasion and the controls on recharge in the aquifer and to try to understand whether the aquifer is broken into discrete compartments. Maps and schematic cross-sections of groundwater heads for the years 1993, and 2002 were prepared to trace any structural controls on the groundwater heads across the area. Studying the contour maps and cross sections revealed that: 1) there are substantial differences in groundwater head across some of the NNW-SSE trending faults implying that groundwater flow is strongly limited by faults, 2) an anticline in the east of the area acts as a groundwater divide and 3) the groundwater head seems to follow the topography in some places, although steep changes in groundwater head occur across faults showing that they locally control the groundwater head. The aquifer was thus provisionally subdivided into several hydrogeological sub-basins based on groundwater head patterns and the occurrence of major structural features (faults and a fold). Using groundwater geochemistry data, contour maps of chloride and sulphate concentration largely support the structural sub-division of the area into hydrogeological sub-basins. Scrutiny of groundwater geochemical data, averaged for each sub-basin, confirmed the degree of compartmentalisation and the occurrence of sealed faults. The variation of the geochemical composition of the groundwater not only relates to the different, localised geochemical processes and seawater intrusion but also relates to compartmentalisation due to faulting. Faults have limited the degree of mixing between the groundwater types thus retaining the specific characteristics of each sub-basin. Highly localised seawater intrusion is mainly controlled by low permeability fault close to the Irish Sea and Mersey estuary. There is effectively no invasion of seawater beyond the faults that lie closest to the coastline. Freshwater recharge to the aquifer seems to be highly localised and mainly occurs by vertical percolation of rain and surface water rather than whole aquifer-scale groundwater flow. This study provides a detailed understanding of the groundwater flow processes in Liverpool as an example of methods can be applied to groundwater management elsewhere

    Groundwater compartmentalisation: a geochemical analysis of the structural controls on the subdivision of a major aquifer, the Sherwood Sandstone, Merseyside, UK

    No full text
    International audienceThe study was initiated to assess the local groundwater flow, the extent of seawater invasion and the controls on recharge in the aquifer and to try to understand whether the aquifer is broken into discrete compartments. The study area is located in the northwest of England and encompasses the urban area of Liverpool and surrounding countryside and extends east-west from Liverpool to Widnes and as far north as Formby. The Irish Sea marks the western margin of the area while the Mersey estuary defines the southern margin. The Triassic sandstone in this area has been, and remains, an important aquifer although industrialisation and groundwater exploitation have led to significant water quality problems. Maps of water table for the years 1993, 1997, 2000 and 2002 and schematic cross-sections of the water table height along the faults were prepared to trace any effect of these faults on water table height across. Studying the water table maps and cross sections revealed that: 1) there are substantial differences in water table height across some of the NNW-SSE trending faults implying that groundwater flow is strongly limited by fault, 2) an anticline in the east of the area acts as a groundwater divide and 3) the water table seems to follow the topography in some places, although steep changes in water table occur across faults showings that they locally control the water table elevation. The aquifer was thus provisionally subdivided into several hydrogeological sub-basins based on water table height patterns and the occurrence of major structural features (faults and a fold). Using groundwater geochemistry data, contour maps of chloride and sulphate concentration largely support the structural sub-division of the area into hydrogeological sub-basins. Scrutiny of groundwater geochemical data, averaged for each sub-basin, confirmed the degree of compartmentalisation and the occurrence of sealed faults. The variation of the geochemical composition of the groundwater not only relates to the different, localised geochemical processes and seawater intrusion but also relate to compartmentalisation due to faulting. Faults have limited the degree of mixing between the groundwater types thus retaining the specific characteristics of each sub-basin. Highly localised seawater intrusion is mainly controlled by low permeability fault close to the Irish Sea and Mersey estuary. There is no effectively no invasion of seawater beyond the faults that lie closest to the coastline. Freshwater recharge to the aquifer must be highly localised and will mainly occur by vertical percolation of rain and surface water rather than whole aquifer-scale groundwater flow

    High-performance thermionic converter Quarterly progress report, 13 Nov. 1965 - 13 Feb. 1966

    Get PDF
    Stability and optimization parameters of cesium vapor thermionic converters studied in high performance long life equipment fabrication projec

    Satellite data interpretation of causes and controls on groundwater-seawater flow directions, Merseyside, UK: implications for assessing saline intrusions

    No full text
    International audienceGroundwater in the Triassic Sherwood Sandstone aquifer, Liverpool, UK, has locally elevated chloride concentrations (~4000 mg/l) in parts of the coastal region although there is freshwater right up to the coast line in other areas. The aquifer is cut my numerous faults with vertical displacements of as much 300 m. SPOT satellite data have been used for the Merseyside area of Liverpool. The satellite data revealed and confirmed the location of some of the main faults since the fault zones of the aquifer have low permeability (due to grain crushing, cataclasis, and clay smearing). Where fault zones outcrop at the surface, below the well-developed regolith, there is locally elevated soil water and thus anomalous vegetation patterns in comparison to unfaulted and highly porous aquifer. The ability to identify fault zones by this satellite-based method strongly suggests that they are at least partially sealing, sub-vertical features in the aquifer. Digitally enhanced and processed satellite data were used to define the relative proportions of sand and clay in the near-coastal (inter-tidal) part of the Mersey estuary. Sand-dominated sediment has higher pixel values in comparison with clay deposits in the near infrared spectral region (NIR). Where open and weathered fault rocks crop out at the surface near the intertidal zone, water movement in these potential surface water conduits is limited where the intertidal zone is clay-dominated since clay will plug the conduit. Where these weathered and open fault-rocks crop out against sand-dominated parts of the coastline, fresh water outflux into the seawater has been imaged using the satellite data. Furthermore, the high and low chloride concentration parts of the aquifer are separated by major, sub-vertical fault zones and have allowed a very steep water table gradient to remain in the aquifer

    Animal-sediment interactions: the effect of ingestion and excretion by worms on mineralogy

    No full text
    International audienceBy controlled experiments that simulate marine depositional environments, it is shown that accelerated weathering and clay mineral authigenesis occur during the combined process of ingestion, digestion and excretion of fine-grained sediment by two species of annelid worms. Previously characterized synthetic mud was created using finely ground, low-grade metamorphic slate (temperature approximately 300°C) containing highly crystalline chlorite and muscovite. This was added to experiment and control tanks along with clean, wind-blown sand. Faecal casts were collected at regular intervals from the experimental tanks and, less frequently, from the control tanks. Over a period of many months the synthetic mud (slate) proved to be unchanged in the control tanks, but was significantly different in faecal casts from the experimental tanks that contained the worms Arenicola marina and Lumbricus terrestris. Chlorite was preferentially destroyed during digestion in the gut of A. marina. Both chlorite and muscovite underwent XRD peak broadening with a skew developing towards higher lattice spacing, characteristic of smectite formation. A neoformed Fe-Mg-rich clay mineral (possibly berthierine) and as-yet undefined clay minerals with very high d-spacing were detected in both A. marina and L. terrestris cast samples. We postulate that a combination of the low pH and bacteria-rich microenvironment in the guts of annelid worms may radically accelerate mineral dissolution and clay mineral precipitation processes during digestion. These results show that macrobiotic activity significantly accelerates weathering and mineral degradation as well as mineral authigenesis. The combined processes of sediment ingestion and digestion thus lead to early diagenetic growth of clay minerals in clastic sediments

    Land-use impacts on large wildlife and livestock in the swamps of the Greater Amboseli Ecosystem. Part 2

    Get PDF

    Dynamical response of the "GGG" rotor to test the Equivalence Principle: theory, simulation and experiment. Part I: the normal modes

    Get PDF
    Recent theoretical work suggests that violation of the Equivalence Principle might be revealed in a measurement of the fractional differential acceleration η\eta between two test bodies -of different composition, falling in the gravitational field of a source mass- if the measurement is made to the level of η1013\eta\simeq 10^{-13} or better. This being within the reach of ground based experiments, gives them a new impetus. However, while slowly rotating torsion balances in ground laboratories are close to reaching this level, only an experiment performed in low orbit around the Earth is likely to provide a much better accuracy. We report on the progress made with the "Galileo Galilei on the Ground" (GGG) experiment, which aims to compete with torsion balances using an instrument design also capable of being converted into a much higher sensitivity space test. In the present and following paper (Part I and Part II), we demonstrate that the dynamical response of the GGG differential accelerometer set into supercritical rotation -in particular its normal modes (Part I) and rejection of common mode effects (Part II)- can be predicted by means of a simple but effective model that embodies all the relevant physics. Analytical solutions are obtained under special limits, which provide the theoretical understanding. A simulation environment is set up, obtaining quantitative agreement with the available experimental data on the frequencies of the normal modes, and on the whirling behavior. This is a needed and reliable tool for controlling and separating perturbative effects from the expected signal, as well as for planning the optimization of the apparatus.Comment: Accepted for publication by "Review of Scientific Instruments" on Jan 16, 2006. 16 2-column pages, 9 figure

    Evaluating Positron Emission Tomography Use in Differentiated Thyroid Cancer

    Full text link
    Background: Using the Surveillance, Epidemiology, and End Results?Medicare database, a substantial increase was found in the use of positron emission tomography (PET) scans after 2004 in differentiated thyroid cancer (DTC) patients. The reason for the increased utilization of the PET scan was not clear based on available the data. Therefore, the indications for and outcomes of PET scans performed at an academic institution were evaluated. Methods: A retrospective cohort study was performed of DTC patients who underwent surgery at the University of Michigan Health System from 2006 to 2011. After identifying patients who underwent a PET scan, indications, rate of positive PET scans, and impact on management were evaluated. For positive scans, the location of disease was characterized, and presence of disease on other imaging was determined. Results: Of the 585 patients in the cohort, 111 (19%) patients had 200 PET scans performed for evaluation of DTC. Indications for PET scan included: elevated thyroglobulin and negative radioiodine scan in 52 scans (26.0%), thyroglobulin antibodies in 13 scans (6.5%), rising thyroglobulin in 18 scans (9.0%), evaluation of abnormality on other imaging in 22 scans (11.0%), evaluation of extent of disease in 33 scans (16.5%), follow-up of previous scan in 57 scans (28.5%), other indications in two scans (1.0%), and unclear indications in three scans (1.5%). The PET scan was positive in 124 studies (62.0%); positivity was identified in the thyroid bed on 25 scans, cervical or mediastinal lymph nodes on 105 scans, lung on 28 scans, bone on four scans, and other areas on 14 scans. Therapy following PET scan was surgery in 66 cases (33.0%), chemotherapy or radiation in 23 cases (11.5%), observation in 110 cases (55.0%), and palliative care in one case (0.5%). Disease was identifiable on other imaging in 66% of cases. PET scan results changed management in 59 cases (29.5%). Conclusions: In this academic medical center, the PET scan was utilized in 19% of patients. Indications for the PET scan included conventional indications, such as elevated thyroglobulin with noniodine avid disease, and more controversial uses, such as evaluation of extent of disease or abnormalities on other imaging tests. PET scan results changed management in about 30% of cases.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140264/1/thy.2015.0062.pd

    Managing bereavement in the classroom: a conspiracy of silence?

    Get PDF
    The ways in which teachers in British schools manage bereaved children are under-reported. This article reports the impact of students' bereavement and their subsequent management in primary and secondary school classrooms in Southeast London. Thirteen school staff working in inner-city schools took part in in-depth interviews that focused on the impact of bereaved children on the school and how teachers responded to these children. All respondents had previously had contact with a local child bereavement service that aims to provide support, advice, and consultancy to children, their parents, and teachers. Interviews were audiotaped, transcribed verbatim, and analyzed using ATLAS-ti. Three main themes were identified from analysis of interview data. Firstly, British society, culture, local communities, and the family were significant influences in these teachers' involvement with bereaved students. Secondly, school staff managed bereaved students through contact with other adults and using practical classroom measures such as "time out" cards and contact books. Lastly, teachers felt they had to be strong, even when they were distressed. Surprise was expressed at the mature reaction of secondary school students to deaths of others. The article recommends that future research needs to concentrate on finding the most effective way of supporting routinely bereaved children, their families, and teachers
    corecore