13,344 research outputs found

    Equilibrium magnetization in the vicinity of the first order phase transition in the mixed state of high-Tc superconductors

    Full text link
    We present the results of a scaling analysis of isothermal magnetization M(H) curves measured in the mixed state of high-Tc superconductors in the vicinity of the established first order phase transition. The most surprising result of our analysis is that the difference between the magnetization above and below the transition may have either sign, depending on the particular chosen sample. We argue that this observation, based on M(H) data available in the literature, is inconsistent with the interpretation that the well known first order phase transition in the mixed state of high-Tc superconductors always represents the melting transition in the vortex system.Comment: 4 pages, 5 figure

    Magnetic properties of PrCu2_2 at high pressure

    Full text link
    We report a study of the low-temperature high-pressure phase diagram of the intermetallic compound PrCu2_2, by means of molecular-field calculations and 63,65^{63,65}Cu nuclear-quadrupole-resonance (NQR) measurements under pressure. The pressure-induced magnetically-ordered phase can be accounted for by considering the influence of the crystal electric field on the 4f4f electron orbitals of the Pr3+^{3+} ions and by introducing a pressure-dependent exchange interaction between the corresponding local magnetic moments. Our experimental data suggest that the order in the induced antiferromagnetic phase is incommensurate. The role of magnetic fluctuations both at high and low pressures is also discussed.Comment: 7 pages, 6 figures, submitted to Eur. Phys. J.

    Optical evidence for a spin-filter effect in the charge transport of Eu0.6Ca0.4B6Eu_{0.6}Ca_{0.4}B_{6}

    Full text link
    We have measured the optical reflectivity R(ω)R(\omega) of Eu0.6Ca0.4B6Eu_{0.6}Ca_{0.4}B_{6} as a function of temperature between 1.5 and 300 KK and in external magnetic fields up to 7 TT. The slope at the onset of the plasma edge feature in R(ω)R(\omega) increases with decreasing temperature and increasing field but the plasma edge itself does not exhibit the remarkable blue shift that is observed in the binary compound EuB6EuB_{6}. The analysis of the magnetic field dependence of the low temperature optical conductivity spectrum confirms the previously observed exponential decrease of the electrical resistivity upon increasing, field-induced bulk magnetization at constant temperature. In addition, the individual exponential magnetization dependences of the plasma frequency and scattering rate are extracted from the optical data.Comment: submitted to Phys. Rev. Let
    corecore