9,857 research outputs found
Hamiltonians for curves
We examine the equilibrium conditions of a curve in space when a local energy
penalty is associated with its extrinsic geometrical state characterized by its
curvature and torsion. To do this we tailor the theory of deformations to the
Frenet-Serret frame of the curve. The Euler-Lagrange equations describing
equilibrium are obtained; Noether's theorem is exploited to identify the
constants of integration of these equations as the Casimirs of the euclidean
group in three dimensions. While this system appears not to be integrable in
general, it {\it is} in various limits of interest. Let the energy density be
given as some function of the curvature and torsion, . If
is a linear function of either of its arguments but otherwise arbitrary, we
claim that the first integral associated with rotational invariance permits the
torsion to be expressed as the solution of an algebraic equation in
terms of the bending curvature, . The first integral associated with
translational invariance can then be cast as a quadrature for or for
.Comment: 17 page
Localized induction equation and pseudospherical surfaces
We describe a close connection between the localized induction equation
hierarchy of integrable evolution equations on space curves, and surfaces of
constant negative Gauss curvature.Comment: 21 pages, AMSTeX file. To appear in Journal of Physics A:
Mathematical and Genera
Simplicity of extremal eigenvalues of the Klein-Gordon equation
We consider the spectral problem associated with the Klein-Gordon equation
for unbounded electric potentials. If the spectrum of this problem is contained
in two disjoint real intervals and the two inner boundary points are
eigenvalues, we show that these extremal eigenvalues are simple and possess
strictly positive eigenfunctions. Examples of electric potentials satisfying
these assumptions are given
Centrifugal terms in the WKB approximation and semiclassical quantization of hydrogen
A systematic semiclassical expansion of the hydrogen problem about the
classical Kepler problem is shown to yield remarkably accurate results. Ad hoc
changes of the centrifugal term, such as the standard Langer modification where
the factor l(l+1) is replaced by (l+1/2)^2, are avoided. The semiclassical
energy levels are shown to be exact to first order in with all higher
order contributions vanishing. The wave functions and dipole matrix elements
are also discussed.Comment: 5 pages, to appear in Phys. Rev.
A Simple Theory of Condensation
A simple assumption of an emergence in gas of small atomic clusters
consisting of particles each, leads to a phase separation (first order
transition). It reveals itself by an emergence of ``forbidden'' density range
starting at a certain temperature. Defining this latter value as the critical
temperature predicts existence of an interval with anomalous heat capacity
behaviour . The value suggested in literature
yields the heat capacity exponent .Comment: 9 pages, 1 figur
Multiply-connected Bose-Einstein condensed alkali gases: Current-carrying states and their decay
The ability to support metastable current-carrying states in
multiply-connected settings is one of the prime signatures of superfluidity.
Such states are investigated theoretically for the case of trapped Bose
condensed alkali gases, particularly with regard to the rate at which they
decay via thermal fluctuations. The lifetimes of metastable currents can be
either longer or shorter than experimental time-scales. A scheme for the
experimental detection of metastable states is sketched.Comment: 4 pages, including 1 figure (REVTEX
A high-reflectivity high-Q micromechanical Bragg-mirror
We report on the fabrication and characterization of a micromechanical
oscillator consisting only of a free-standing dielectric Bragg mirror with high
optical reflectivity and high mechanical quality. The fabrication technique is
a hybrid approach involving laser ablation and dry etching. The mirror has a
reflectivity of 99.6%, a mass of 400ng, and a mechanical quality factor Q of
approximately 10^4. Using this micromirror in a Fabry Perot cavity, a finesse
of 500 has been achieved. This is an important step towards designing tunable
high-Q high-finesse cavities on chip.Comment: 3 pages, 2 figure
A ground-based experimental test program to duplicate and study the spacecraft glow phenomenon
The use of a plasma device, the Advanced Concepts Torus-I, for producing atoms and molecules to study spacecraft glow mechanisms is discussed. A biased metal plate, located in the plasma edge, is used to accelerate and neutralize plasma ions, thus generating a neutral beam with a flux approx. 5 x 10 to the 14th power/sq cm/sec at the end of a drift tube. Our initial experiments are to produce a 10 eV molecular and atomic nitrogen beam directed onto material targets. Photon emission in the spectral range 2000 to 9000 A from excited species formed on the target surface will be investigated
Self-cooling of a micro-mirror by radiation pressure
We demonstrate passive feedback cooling of a mechanical resonator based on
radiation pressure forces and assisted by photothermal forces in a high-finesse
optical cavity. The resonator is a free-standing high-reflectance micro-mirror
(of mass m=400ng and mechanical quality factor Q=10^4) that is used as
back-mirror in a detuned Fabry-Perot cavity of optical finesse F=500. We
observe an increased damping in the dynamics of the mechanical oscillator by a
factor of 30 and a corresponding cooling of the oscillator modes below 10 K
starting from room temperature. This effect is an important ingredient for
recently proposed schemes to prepare quantum entanglement of macroscopic
mechanical oscillators.Comment: 11 pages, 9 figures, minor correction
Theory for Dynamical Short Range Order and Fermi Surface Volume in Strongly Correlated Systems
Using the fluctuation exchange approximation of the one band Hubbard model,
we discuss the origin of the changing Fermi surface volume in underdoped
cuprate systems due to the transfer of occupied states from the Fermi surface
to its shadow, resulting from the strong dynamical antiferromagnetic short
range correlations. The momentum and temperature dependence of the quasi
particle scattering rate shows unusual deviations from the conventional Fermi
liquid like behavior. Their consequences for the changing Fermi surface volume
are discussed. Here, we investigate in detail which scattering processes
might be responsible for a violation of the Luttinger theorem. Finally, we
discuss the formation of hole pockets near half filling.Comment: 5 pages, Revtex, 4 postscript figure
- …