41,591 research outputs found
Composite load spectra for select space propulsion structural components
The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen (LOX) posts and system ducting. These models will be developed using two independent approaches. The first approach consists of using state-of-the-art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The methodology required to combine the various individual load simulation models (hot-gas dynamic, vibrations, instantaneous position, centrifugal field, etc.) into composite load spectra simulation models will be developed under this program. A computer code incorporating the various individual and composite load spectra models will be developed to construct the specific load model desired. The second approach, which is covered under the options portion of the contract, will consist of developing coupled models for composite load spectra simulation which combine the (deterministic) models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data. This report covers the efforts of the third year of the contract. The overall program status is that the turbine blade loads have been completed and implemented. The transfer duct loads are defined and are being implemented. The thermal loads for all components are defined and coding is being developed. A dynamic pressure load model is under development. The parallel work on the probabilistic methodology is essentially completed. The overall effort is being integrated in an expert system code specifically developed for this project
Composite load spectra for select space propulsion structural components
The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen posts and system ducting. The first approach will consist of using state of the art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The second approach will consist of developing coupled models for composite load spectra simulation which combine the deterministic models for composite load dynamic, acoustic, high pressure, and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data
Reported Earnings and Analyst Forecasts as Competing Sources of Information: A New Approach
We study information flows between earnings and forecasts, using suitably adapted Granger causality tests. This approach complements existing cross-sectional studies by abstracting from stock market reactions to information, and focussing on dynamic interactions between information flows instead. We find bi-directional causality in timeseries of analyst earnings forecasts and reported earnings, supporting our expectation that forecasts contribute to information that is reflected in future reports. Further, our evidence of feedback suggests that past reports and forecasts are both reflected in future forecasts, implying that the information in reports has inherent value, and that forecasts do not fully substitute for reports.
Probabilistic evaluation of SSME structural components
The application is described of Composite Load Spectra (CLS) and Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) family of computer codes to the probabilistic structural analysis of four Space Shuttle Main Engine (SSME) space propulsion system components. These components are subjected to environments that are influenced by many random variables. The applications consider a wide breadth of uncertainties encountered in practice, while simultaneously covering a wide area of structural mechanics. This has been done consistent with the primary design requirement for each component. The probabilistic application studies are discussed using finite element models that have been typically used in the past in deterministic analysis studies
Composite load spectra for select space propulsion structural components
The objective of the Composite Load Spectra (CLS) project is to build a knowledge based system to synthesize probabilistic loads for selected space propulsion engine components. The knowledge based system has a load expert system module and a load calculation module. The load expert system provides load information and the load calculation module generates the probabilistic load distributions. The engine loads are divided into 4 broad classes: the engine independent loads, the engine system dependent load, the component local independent loads and the component loads. These classes are defined and illustrated
A New H I Survey of Active Galaxies
We have conducted a new Arecibo survey for H I emission for 113 galaxies with
broad-line (type 1) active galactic nuclei (AGNs) out to recession velocities
as high as 35,000 km/s. The primary aim of the study is to obtain sensitive H I
spectra for a well-defined, uniformly selected sample of active galaxies that
have estimates of their black hole masses in order to investigate correlations
between H I properties and the characteristics of the AGNs. H I emission was
detected in 66 out of the 101 (65%) objects with spectra uncorrupted by radio
frequency interference, among which 45 (68%) have line profiles with adequate
signal-to-noise ratio and sufficiently reliable inclination corrections to
yield robust deprojected rotational velocities. This paper presents the basic
survey products, including an atlas of H I spectra, measurements of H I flux,
line width, profile asymmetry, optical images, optical spectroscopic
parameters, as well as a summary of a number of derived properties pertaining
to the host galaxies. To enlarge our primary sample, we also assemble all
previously published H I measurements of type 1 AGNs for which can can estimate
black hole masses, which total an additional 53 objects. The final
comprehensive compilation of 154 broad-line active galaxies, by far the largest
sample ever studied, forms the basis of our companion paper, which uses the H I
database to explore a number of properties of the AGN host galaxies.Comment: To appear in ApJS; 31 pages. Preprint will full-resolution figures
can be downloaded from http://www.ociw.edu/~lho/preprints/ms1.pd
The composite load spectra project
Probabilistic methods and generic load models capable of simulating the load spectra that are induced in space propulsion system components are being developed. Four engine component types (the transfer ducts, the turbine blades, the liquid oxygen posts and the turbopump oxidizer discharge duct) were selected as representative hardware examples. The composite load spectra that simulate the probabilistic loads for these components are typically used as the input loads for a probabilistic structural analysis. The knowledge-based system approach used for the composite load spectra project provides an ideal environment for incremental development. The intelligent database paradigm employed in developing the expert system provides a smooth coupling between the numerical processing and the symbolic (information) processing. Large volumes of engine load information and engineering data are stored in database format and managed by a database management system. Numerical procedures for probabilistic load simulation and database management functions are controlled by rule modules. Rules were hard-wired as decision trees into rule modules to perform process control tasks. There are modules to retrieve load information and models. There are modules to select loads and models to carry out quick load calculations or make an input file for full duty-cycle time dependent load simulation. The composite load spectra load expert system implemented today is capable of performing intelligent rocket engine load spectra simulation. Further development of the expert system will provide tutorial capability for users to learn from it
Composite load spectra for select space propulsion structural components
The work performed to develop composite load spectra (CLS) for the Space Shuttle Main Engine (SSME) using probabilistic methods. The three methods were implemented to be the engine system influence model. RASCAL was chosen to be the principal method as most component load models were implemented with the method. Validation of RASCAL was performed. High accuracy comparable to the Monte Carlo method can be obtained if a large enough bin size is used. Generic probabilistic models were developed and implemented for load calculations using the probabilistic methods discussed above. Each engine mission, either a real fighter or a test, has three mission phases: the engine start transient phase, the steady state phase, and the engine cut off transient phase. Power level and engine operating inlet conditions change during a mission. The load calculation module provides the steady-state and quasi-steady state calculation procedures with duty-cycle-data option. The quasi-steady state procedure is for engine transient phase calculations. In addition, a few generic probabilistic load models were also developed for specific conditions. These include the fixed transient spike model, the poison arrival transient spike model, and the rare event model. These generic probabilistic load models provide sufficient latitude for simulating loads with specific conditions. For SSME components, turbine blades, transfer ducts, LOX post, and the high pressure oxidizer turbopump (HPOTP) discharge duct were selected for application of the CLS program. They include static pressure loads and dynamic pressure loads for all four components, centrifugal force for the turbine blade, temperatures of thermal loads for all four components, and structural vibration loads for the ducts and LOX posts
In-plane Theory of Non-Sequential Triple Ionization
We describe first-principles in-plane calculations of non-sequential triple
ionization (NSTI) of atoms in a linearly polarized intense laser pulse. In a
fully classically correlated description, all three electrons respond
dynamically to the nuclear attraction, the pairwise e-e repulsions and the
laser force throughout the duration of a 780nm laser pulse. Nonsequential
ejection is shown to occur in a multi-electron, possibly multi-cycle and
multi-dimensional, rescattering sequence that is coordinated by a number of
sharp transverse recollimation impacts.Comment: 4 pages, 4 figure
- …