201 research outputs found
New Algorithm of the Finite Lattice Method for the High-temperature Expansion of the Ising Model in Three Dimensions
We propose a new algorithm of the finite lattice method to generate the
high-temperature series for the Ising model in three dimensions. It enables us
to extend the series for the free energy of the simple cubic lattice from the
previous series of 26th order to 46th order in the inverse temperature. The
obtained series give the estimate of the critical exponent for the specific
heat in high precision.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Letter
Large- expansion of the specific heat for the two-dimensional -state Potts model
We have calculated the large- expansion for the specific heat at the phase
transition point in the two-dimensional -state Potts model to the 23rd order
in using the finite lattice method. The obtained series allows us
to give highly convergent estimates of the specific heat for on the first
order transition point. The result confirm us the correctness of the conjecture
by Bhattacharya et al. on the asymptotic behavior of the specific heat for .Comment: 7 pages, LaTeX, 2 postscript figure
Study of the Potts Model on the Honeycomb and Triangular Lattices: Low-Temperature Series and Partition Function Zeros
We present and analyze low-temperature series and complex-temperature
partition function zeros for the -state Potts model with on the
honeycomb lattice and on the triangular lattice. A discussion is given
as to how the locations of the singularities obtained from the series analysis
correlate with the complex-temperature phase boundary. Extending our earlier
work, we include a similar discussion for the Potts model with on the
honeycomb lattice and with on the kagom\'e lattice.Comment: 33 pages, Latex, 9 encapsulated postscript figures, J. Phys. A, in
pres
Monte Carlo Study of an Extended 3-State Potts Model on the Triangular Lattice
By introducing a chiral term into the Hamiltonian of the 3-state Potts model
on a triangular lattice additional symmetries are achieved between the
clockwise and anticlockwise states and the ferromagnetic state. This model is
investigated using Monte Carlo methods. We investigate the full phase diagram
and find evidence for a line tricritical points separating the ferromagnetic
and antiferromagnetic phases.Comment: 6 pages, 10 figure
Critical surfaces for general inhomogeneous bond percolation problems
We present a method of general applicability for finding exact or accurate
approximations to bond percolation thresholds for a wide class of lattices. To
every lattice we sytematically associate a polynomial, the root of which in
is the conjectured critical point. The method makes the correct
prediction for every exactly solved problem, and comparison with numerical
results shows that it is very close, but not exact, for many others. We focus
primarily on the Archimedean lattices, in which all vertices are equivalent,
but this restriction is not crucial. Some results we find are kagome:
, , ,
, , :
. The results are generally within of numerical
estimates. For the inhomogeneous checkerboard and bowtie lattices, errors in
the formulas (if they are not exact) are less than .Comment: Submitted to J. Stat. Mec
Self-avoiding walks crossing a square
We study a restricted class of self-avoiding walks (SAW) which start at the
origin (0, 0), end at , and are entirely contained in the square on the square lattice . The number of distinct
walks is known to grow as . We estimate as well as obtaining strict upper and lower bounds,
We give exact results for the number of SAW of
length for and asymptotic results for .
We also consider the model in which a weight or {\em fugacity} is
associated with each step of the walk. This gives rise to a canonical model of
a phase transition. For the average length of a SAW grows as ,
while for it grows as
. Here is the growth constant of unconstrained SAW in . For we provide numerical evidence, but no proof, that the
average walk length grows as .
We also consider Hamiltonian walks under the same restriction. They are known
to grow as on the same lattice. We give
precise estimates for as well as upper and lower bounds, and prove that
Comment: 27 pages, 9 figures. Paper updated and reorganised following
refereein
Finite-lattice expansion for Ising models on quasiperiodic tilings
Low-temperature series are calculated for the free energy, magnetisation,
susceptibility and field-derivatives of the susceptibility in the Ising model
on the quasiperiodic Penrose lattice. The series are computed to order 20 and
estimates of the critical exponents alpha, beta and gamma are obtained from
Pade approximants.Comment: 16 pages, REVTeX, 26 postscript figure
- …