847 research outputs found
Stabilized high-power laser system for the gravitational wave detector advanced LIGO
An ultra-stable, high-power cw Nd:YAG laser system, developed for the ground-based gravitational wave detector Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory), was comprehensively characterized. Laser power, frequency, beam pointing and beam quality were simultaneously stabilized using different active and passive schemes. The output beam, the performance of the stabilization, and the cross-coupling between different stabilization feedback control loops were characterized and found to fulfill most design requirements. The employed stabilization schemes and the achieved performance are of relevance to many high-precision optical experiments
GEO 600 and the GEO-HF upgrade program: successes and challenges
The German-British laser-interferometric gravitational wave detector GEO 600
is in its 14th year of operation since its first lock in 2001. After GEO 600
participated in science runs with other first-generation detectors, a program
known as GEO-HF began in 2009. The goal was to improve the detector sensitivity
at high frequencies, around 1 kHz and above, with technologically advanced yet
minimally invasive upgrades. Simultaneously, the detector would record science
quality data in between commissioning activities. As of early 2014, all of the
planned upgrades have been carried out and sensitivity improvements of up to a
factor of four at the high-frequency end of the observation band have been
achieved. Besides science data collection, an experimental program is ongoing
with the goal to further improve the sensitivity and evaluate future detector
technologies. We summarize the results of the GEO-HF program to date and
discuss its successes and challenges
Cryptotomography: reconstructing 3D Fourier intensities from randomly oriented single-shot diffraction patterns
We reconstructed the 3D Fourier intensity distribution of mono-disperse
prolate nano-particles using single-shot 2D coherent diffraction patterns
collected at DESY's FLASH facility when a bright, coherent, ultrafast X-ray
pulse intercepted individual particles of random, unmeasured orientations. This
first experimental demonstration of cryptotomography extended the
Expansion-Maximization-Compression (EMC) framework to accommodate unmeasured
fluctuations in photon fluence and loss of data due to saturation or background
scatter. This work is an important step towards realizing single-shot
diffraction imaging of single biomolecules.Comment: 4 pages, 4 figure
Recommended from our members
Damage-resistant single-pulse optics for x-ray free electron lasers
Short-pulse ultraviolet and x-ray free electron lasers of unprecedented peak brightness are in the process of revolutionizing physics, chemistry, and biology. Optical components for these new light sources have to be able to withstand exposure to the extremely high-fluence photon pulses. Whereas most optics have been designed to stay intact for many pulses, it has also been suggested that single-pulse optics that function during the pulse but disintegrate on a longer timescale, may be useful at higher fluences than multiple-pulse optics. In this paper we will review damage-resistant single-pulse optics that recently have been demonstrated at the FLASH soft-x-ray laser facility at DESY, including mirrors, apertures, and nanolenses. It was found that these objects stay intact for the duration of the 25-fs FLASH pulse, even when exposed to fluences that exceed the melt damage threshold by fifty times or more. We present a computational model for the FLASH laser-material interaction to analyze the extent to which the optics still function during the pulse. Comparison to experimental results obtained at FLASH shows good quantitative agreement
In-situ observation of the formation of laser-induced periodic surface structures with extreme spatial and temporal resolution
Irradiation of solid surfaces with intense ultrashort laser pulses represents a unique way of depositing energy into materials. It allows to realize states of extreme electronic excitation and/or very high temperature and pressure, and to drive materials close to and beyond fundamental stability limits. As a consequence, structural changes and phase transitions often occur along unusual pathways and under strongly non-equilibrium conditions. Due to the inherent multiscale nature - both temporally and spatially - of these irreversible processes their direct experimental observation requires techniques that combine high temporal resolution with the appropriate spatial resolution and the capability to obtain good quality data on a single pulse/event basis. In this respect fourth generation light sources, namely short wavelength, short pulse free electron lasers (FELs) are offering new and fascinating possibilities. As an example, this chapter will discuss the results of scattering experiments carried at the FLASH free electron laser at DESY (Hamburg, Germany), which allowed us to resolve laser-induced structure formation at surfaces on the nanometer to sub-micron length scale and in temporal regimes ranging from picoseconds to several nanoseconds with sub-picosecond resolution
Exploring Protein-Protein Interactions as Drug Targets for Anti-cancer Therapy with In Silico Workflows
We describe a computational protocol to aid the design of small molecule and peptide drugs that target protein-protein interactions, particularly for anti-cancer therapy. To achieve this goal, we explore multiple strategies, including finding binding hot spots, incorporating chemical similarity and bioactivity data, and sampling similar binding sites from homologous protein complexes. We demonstrate how to combine existing interdisciplinary resources with examples of semi-automated workflows. Finally, we discuss several major problems, including the occurrence of drug-resistant mutations, drug promiscuity, and the design of dual-effect inhibitors.Fil: Goncearenco, Alexander. National Institutes of Health; Estados UnidosFil: Li, Minghui. Soochow University; China. National Institutes of Health; Estados UnidosFil: Simonetti, Franco Lucio. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Instituto de Investigaciones BioquĂmicas de Buenos Aires. FundaciĂłn Instituto Leloir. Instituto de Investigaciones BioquĂmicas de Buenos Aires; ArgentinaFil: Shoemaker, Benjamin A. National Institutes of Health; Estados UnidosFil: Panchenko, Anna R. National Institutes of Health; Estados Unido
Induced pseudoscalar coupling of the proton weak interaction
The induced pseudoscalar coupling is the least well known of the weak
coupling constants of the proton's charged--current interaction. Its size is
dictated by chiral symmetry arguments, and its measurement represents an
important test of quantum chromodynamics at low energies. During the past
decade a large body of new data relevant to the coupling has been
accumulated. This data includes measurements of radiative and non radiative
muon capture on targets ranging from hydrogen and few--nucleon systems to
complex nuclei. Herein the authors review the theoretical underpinnings of
, the experimental studies of , and the procedures and uncertainties
in extracting the coupling from data. Current puzzles are highlighted and
future opportunities are discussed.Comment: 58 pages, Latex, Revtex4, prepared for Reviews of Modern Physic
A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal
Embryonic stem (ES) cell self-renewal efficiency is determined by the Nanog protein level. However, the protein partners of Nanog that function to direct self-renewal are unclear. Here, we identify a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members, and RNA processing factors. Sox2 was identified as a robust interacting partner of Nanog. The purified NanogâSox2 complex identified a DNA recognition sequence present in multiple overlapping Nanog/Sox2 ChIP-Seq data sets. The Nanog tryptophan repeat region is necessary and sufficient for interaction with Sox2, with tryptophan residues required. In Sox2, tyrosine to alanine mutations within a triple-repeat motif (S X T/S Y) abrogates the NanogâSox2 interaction, alters expression of genes associated with the Nanog-Sox2 cognate sequence, and reduces the ability of Sox2 to rescue ES cell differentiation induced by endogenous Sox2 deletion. Substitution of the tyrosines with phenylalanine rescues both the Sox2âNanog interaction and efficient self-renewal. These results suggest that aromatic stacking of Nanog tryptophans and Sox2 tyrosines mediates an interaction central to ES cell self-renewal
Specialized dynamical properties of promiscuous residues revealed by simulated conformational ensembles
The ability to interact with different partners is one of the most important features in proteins. Proteins that bind a large number of partners (hubs) have been often associated with intrinsic disorder. However, many examples exist of hubs with an ordered structure, and evidence of a general mechanism promoting promiscuity in ordered proteins is still elusive. An intriguing hypothesis is that promiscuous binding sites have specific dynamical properties, distinct from the rest of the interface and pre-existing in the protein isolated state. Here, we present the first comprehensive study of the intrinsic dynamics of promiscuous residues in a large protein data set. Different computational methods, from coarse-grained elastic models to geometry-based sampling methods and to full-atom Molecular Dynamics simulations, were used to generate conformational ensembles for the isolated proteins. The flexibility and dynamic correlations of interface residues with a different degree of binding promiscuity were calculated and compared considering side chain and backbone motions, the latter both on a local and on a global scale. The study revealed that (a) promiscuous residues tend to be more flexible than nonpromiscuous ones, (b) this additional flexibility has a higher degree of organization, and (c) evolutionary conservation and binding promiscuity have opposite effects on intrinsic dynamics. Findings on simulated ensembles were also validated on ensembles of experimental structures extracted from the Protein Data Bank (PDB). Additionally, the low occurrence of single nucleotide polymorphisms observed for promiscuous residues indicated a tendency to preserve binding diversity at these positions. A case study on two ubiquitin-like proteins exemplifies how binding promiscuity in evolutionary related proteins can be modulated by the fine-tuning of the interface dynamics. The interplay between promiscuity and flexibility highlighted here can inspire new directions in protein-protein interaction prediction and design methods. © 2013 American Chemical Society
X ray emission spectroscopy of bulk liquid water in no man s land
The structure of bulk liquid water was recently probed by x ray scattering below the temperature limit of homogeneous nucleation TH of amp; 8764;232 K [J. A. Sellberg et al., Nature 510, 381 384 2014 ]. Here, we utilize a similar approach to study the structure of bulk liquid water below TH using oxygen K edge x ray emission spectroscopy XES . Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387 400 2008 ] at higher temperatures, we expected the ratio of the 1b1 amp; 8242; and 1b1 amp; 8242; amp; 8242; peaks associated with the lone pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen H bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more importan
- âŠ