4,790 research outputs found

    Applications of the side approximation theorem for surfaces

    Get PDF

    Setting Fees in Competing Double Auction Marketplaces: An Equilibrium Analysis

    No full text
    In this paper, we analyse competing double auction marketplaces that vie for traders and need to set appropriate fees to make a profit. Specifically, we show how competing marketplaces should set their fees by analysing the equilibrium behaviour of two competing marketplaces. In doing so, we focus on two different types of market fees: registration fees charged to traders when they enter the marketplace, and profit fees charged to traders when they make transactions. In more detail, given the market fees, we first derive equations to calculate the marketplaces' expected profits. Then we analyse the equilibrium charging behaviour of marketplaces in two different cases: where competing marketplaces can only charge the same type of fees and where competing marketplaces can charge different types of fees. This analysis provides insights which can be used to guide the charging behaviour of competing marketplaces. We also analyse whether two marketplaces can co-exist in equilibrium. We find that, when both marketplaces are limited to charging the same type of fees, traders will eventually converge to one marketplace. However, when different types of fees are allowed, traders may converge to different marketplaces (i.e. multiple marketplaces can co-exist)

    A Game-Theoretic Analysis of Market Selection Strategies for Competing Double Auction Marketplaces

    No full text
    In this paper, we propose a novel general framework for analysing competing double auction markets that vie for traders, who then need to choose which market to go to. Based on this framework, we analyse the competition between two markets in detail. Specifically, we game-theoretically analyse the equilibrium behaviour of traders' market selection strategies and adopt evolutionary game theory to investigate how traders dynamically change their strategies, and thus, which equilibrium, if any, can be reached. In so doing, we show that it is unlikely for these competing markets to coexist. Eventually, all traders will always converge to locating themselves at one of the markets. Somewhat surprisingly, we find that sometimes all traders converge to the market that charges higher fees. Thus we further analyse this phenomenon, and specifically determine the factors that affect such migration

    Chandra View of DA 530: A Sub-Energetic Supernova Remnant with a Pulsar Wind Nebula?

    Get PDF
    Based on a Chandra ACIS observation, we report the detection of an extended X-ray feature close to the center of the remnant DA 530 with 5.3 sigma above the background within a circle of 20'' radius. This feature, characterized by a power-law with the photon index gamma=1.6+-0.8 and spatially coinciding with a nonthermal radiosource, most likely represents a pulsar wind nebula. We have further examined the spectrum of the diffuse X-ray emission from the remnant interior with a background-subtracted count rate of ~0.06 counts s^-1 in 0.3-3.5 keV. The spectrum of the emission can be described by a thermal plasma with a temperature of ~0.3-0.6 keV and a Si over-abundance of >~7 solar. These spectral characteristics, together with the extremely low X-ray luminosity, suggest that the remnant arises from a supernova with an anomalously low mechanical energy (<10^50 ergs). The centrally-filled thermal X-ray emission of the remnant may indicate an early thermalization of the SN ejecta by the circum-stellar medium. Our results suggest that the remnant is likely the product of a core-collapsed SN with a progenitor mass of 8-12 Msun. Similar remnants are probably common in the Galaxy, but have rarely been studied.Comment: 23 pages, 7 figures, accepted for publication in ApJ; complete the abstract on astro-ph and correct some typo

    Experimental study on Gaussian-modulated coherent states quantum key distribution over standard telecom fiber

    Full text link
    In this paper, we present a fully fiber-based one-way Quantum Key Distribution (QKD) system implementing the Gaussian-Modulated Coherent States (GMCS) protocol. The system employs a double Mach-Zehnder Interferometer (MZI) configuration in which the weak quantum signal and the strong Local Oscillator (LO) go through the same fiber between Alice and Bob, and are separated into two paths inside Bob's terminal. To suppress the LO leakage into the signal path, which is an important contribution to the excess noise, we implemented a novel scheme combining polarization and frequency multiplexing, achieving an extinction ratio of 70dB. To further minimize the system excess noise due to phase drift of the double MZI, we propose that, instead of employing phase feedback control, one simply let Alice remap her data by performing a rotation operation. We further present noise analysis both theoretically and experimentally. Our calculation shows that the combined polarization and frequency multiplexing scheme can achieve better stability in practice than the time-multiplexing scheme, because it allows one to use matched fiber lengths for the signal and the LO paths on both sides of the double MZI, greatly reducing the phase instability caused by unmatched fiber lengths. Our experimental noise analysis quantifies the three main contributions to the excess noise, which will be instructive to future studies of the GMCS QKD systems. Finally, we demonstrate, under the "realistic model" in which Eve cannot control the system within Bob's terminal, a secure key rate of 0.3bit/pulse over a 5km fiber link. This key rate is about two orders of magnitude higher than that of a practical BB84 QKD system.Comment: 21 pages, 9 figure

    Modeling the Broadband Spectral Energy Distribution of the Microquasars XTE J1550-564 and H 1743-322

    Full text link
    We report results from a systematic study of the spectral energy distribution (SED) and spectral evolution of XTE J1550--564 and H 1743--322 in outburst. The jets of both sources have been directly imaged at both radio and X-ray frequencies, which makes it possible to constrain the spectrum of the radiating electrons in the jets. We modelled the observed SEDs of the jet `blobs' with synchrotron emission alone and with synchrotron emission plus inverse Compton scattering. The results favor a pure synchrotron origin of the observed jet emission. Moreover, we found evidence that the shape of the electron spectral distribution is similar for all jet `blobs' seen. Assuming that this is the case for the jet as a whole, we then applied the synchrotron model to the radio spectrum of the total emission and extrapolated the results to higher frequencies. In spite of significant degeneracy in the fits, it seems clear that, while the synchrotron radiation from the jets can account for nearly 100% of the measured radio fluxes, it contributes little to the observed X-ray emission, when the source is relatively bright. In this case, the X-ray emission is most likely dominated by emission from the accretion flows. When the source becomes fainter, however, the jet emission becomes more important, even dominant, at X-ray energies. We also examined the spectral properties of the sources during outbursts and the correlation between the observed radio and X-ray variabilities. The implication of the results is discussed.Comment: 9 pages, 11 figures, MNRAS, accepted; the paper has been much expanded (e.g., arguments strengthened, another source H 1743-322 added) and rewritten (e.g., title changed, abstract revised); the main conclusions remain unchange

    Raman and Infra-red properties and layer dependence of the phonon dispersions in multi-layered graphene

    Full text link
    The symmetry group analysis is applied to classify the phonon modes of NN-stacked graphene layers (NSGL's) with AB- and AA-stacking, particularly their infra-red and Raman properties. The dispersions of various phonon modes are calculated in a multi-layer vibrational model, which is generalized from the lattice vibrational potentials of graphene to including the inter-layer interactions in NSGL's. The experimentally reported red shift phenomena in the layer number dependence of the intra-layer optical C-C stretching mode frequencies are interpreted. An interesting low frequency inter-layer optical mode is revealed to be Raman or Infra-red active in even or odd NSGL's respectively. Its frequency shift is sensitive to the layer number and saturated at about 10 layers.Comment: enlarged versio

    Postprocessing for quantum random number generators: entropy evaluation and randomness extraction

    Full text link
    Quantum random-number generators (QRNGs) can offer a means to generate information-theoretically provable random numbers, in principle. In practice, unfortunately, the quantum randomness is inevitably mixed with classical randomness due to classical noises. To distill this quantum randomness, one needs to quantify the randomness of the source and apply a randomness extractor. Here, we propose a generic framework for evaluating quantum randomness of real-life QRNGs by min-entropy, and apply it to two different existing quantum random-number systems in the literature. Moreover, we provide a guideline of QRNG data postprocessing for which we implement two information-theoretically provable randomness extractors: Toeplitz-hashing extractor and Trevisan's extractor.Comment: 13 pages, 2 figure
    corecore