6,214 research outputs found
High density limit of the two-dimensional electron liquid with Rashba spin-orbit coupling
We discuss by analytic means the theory of the high-density limit of the
unpolarized two-dimensional electron liquid in the presence of Rashba or
Dresselhaus spin-orbit coupling. A generalization of the ring-diagram expansion
is performed. We find that in this regime the spin-orbit coupling leads to
small changes of the exchange and correlation energy contributions, while
modifying also, via repopulation of the momentum states, the noninteracting
energy. As a result, the leading corrections to the chirality and total energy
of the system stem from the Hartree-Fock contributions. The final results are
found to be vanishing to lowest order in the spin-orbit coupling, in agreement
with a general property valid to every order in the electron-electron
interaction. We also show that recent quantum Monte Carlo data in the presence
of Rashba spin-orbit coupling are well understood by neglecting corrections to
the exchange-correlation energy, even at low density values.Comment: 11 pages, 5 figure
Exchange energy and generalized polarization in the presence of spin-orbit coupling in two dimensions
We discuss a general form of the exchange energy for a homogeneous system of
interacting electrons in two spatial dimensions which is particularly suited in
the presence of a generic spin-orbit interaction. The theory is best formulated
in terms of a generalized fractional electronic polarization. Remarkably we
find that a net generalized polarization does not necessarily translate into an
increase in the magnitude of the exchange energy, a fact that in turn favors
unpolarized states. Our results account qualitatively for the findings of
recent experimental investigations
Non perturbative Adler-Bardeen Theorem
The Adler-Bardeen theorem has been proved only as a statement valid at all
orders in perturbation theory, without any control on the convergence of the
series. In this paper we prove a nonperturbative version of the Adler-Bardeen
theorem in by using recently developed technical tools in the theory of
Grassmann integration.Comment: 28 pages, 14 figure
Froth-like minimizers of a non local free energy functional with competing interactions
We investigate the ground and low energy states of a one dimensional non
local free energy functional describing at a mean field level a spin system
with both ferromagnetic and antiferromagnetic interactions. In particular, the
antiferromagnetic interaction is assumed to have a range much larger than the
ferromagnetic one. The competition between these two effects is expected to
lead to the spontaneous emergence of a regular alternation of long intervals on
which the spin profile is magnetized either up or down, with an oscillation
scale intermediate between the range of the ferromagnetic and that of the
antiferromagnetic interaction. In this sense, the optimal or quasi-optimal
profiles are "froth-like": if seen on the scale of the antiferromagnetic
potential they look neutral, but if seen at the microscope they actually
consist of big bubbles of two different phases alternating among each other. In
this paper we prove the validity of this picture, we compute the oscillation
scale of the quasi-optimal profiles and we quantify their distance in norm from
a reference periodic profile. The proof consists of two main steps: we first
coarse grain the system on a scale intermediate between the range of the
ferromagnetic potential and the expected optimal oscillation scale; in this way
we reduce the original functional to an effective "sharp interface" one. Next,
we study the latter by reflection positivity methods, which require as a key
ingredient the exact locality of the short range term. Our proof has the
conceptual interest of combining coarse graining with reflection positivity
methods, an idea that is presumably useful in much more general contexts than
the one studied here.Comment: 38 pages, 2 figure
Striped periodic minimizers of a two-dimensional model for martensitic phase transitions
In this paper we consider a simplified two-dimensional scalar model for the
formation of mesoscopic domain patterns in martensitic shape-memory alloys at
the interface between a region occupied by the parent (austenite) phase and a
region occupied by the product (martensite) phase, which can occur in two
variants (twins). The model, first proposed by Kohn and Mueller, is defined by
the following functional: where
is periodic in and almost everywhere.
Conti proved that if then the minimal specific
energy scales like ,
as . In the regime , we improve Conti's results, by computing exactly the
minimal energy and by proving that minimizers are periodic one-dimensional
sawtooth functions.Comment: 29 pages, 3 figure
The Hartree-Fock ground state of the three-dimensional electron gas
In 1962, Overhauser showed that within Hartree-Fock (HF) the electron gas is
unstable to a spin density wave (SDW) instability. Determining the true HF
ground state has remained a challenge. Using numerical calculations for finite
systems and analytic techniques, we study the HF ground state of the 3D
electron gas. At high density, we find broken spin symmetry states with a
nearly constant charge density. Unlike previously discussed spin wave states,
the observed wave vector of the SDW is smaller than . The
broken-symmetry state originates from pairing instabilities at the Fermi
surface, a model for which is proposed.Comment: 4 pages, 4 figure
Model-independent Limits from Spin-dependent WIMP Dark Matter Experiments
Spin-dependent WIMP searches have traditionally presented results within an
odd group approximation and by suppressing one of the spin-dependent
interaction cross sections. We here elaborate on a model-independent analysis
in which spin-dependent interactions with both protons and neutrons are
simultaneously considered. Within this approach, equivalent current limits on
the WIMP-nucleon interaction at WIMP mass of 50 GeV/c are either
pb, pb or ,
depending on the choice of cross section or coupling strength
representation. These limits become less restrictive for either larger or
smaller masses; they are less restrictive than those from the traditional odd
group approximation regardless of WIMP mass. Combination of experimental
results are seen to produce significantly more restrictive limits than those
obtained from any single experiment. Experiments traditionally considered
spin-independent are moreover found to severely limit the spin-dependent phase
space. The extension of this analysis to the case of positive signal
experiments is explored.Comment: 12 pages, 12 figures, submitted to Phys. Rev.
To what extent can dynamical models describe statistical features of turbulent flows?
Statistical features of "bursty" behaviour in charged and neutral fluid
turbulence, are compared to statistics of intermittent events in a GOY shell
model, and avalanches in different models of Self Organized Criticality (SOC).
It is found that inter-burst times show a power law distribution for turbulent
samples and for the shell model, a property which is shared only in a
particular case of the running sandpile model. The breakdown of self-similarity
generated by isolated events observed in the turbulent samples, is well
reproduced by the shell model, while it is absent in all SOC models considered.
On this base, we conclude that SOC models are not adequate to mimic fluid
turbulence, while the GOY shell model constitutes a better candidate to
describe the gross features of turbulence.Comment: 14 pages, 4 figures, in press on Europhys. Lett. (may 2002
- …