82 research outputs found

    Do crabs have favorite colors?

    Get PDF

    A in the Life: My Job is Changing

    Get PDF

    Bioengineered Internal Anal Sphincter Derived From Isolated Human Internal Anal Sphincter Smooth Muscle Cells

    Get PDF
    BACKGROUND & AIMS: The internal anal sphincter (IAS) is a specialized circular smooth muscle that maintains rectoanal continence. In vitro models are needed to study the pathophysiology of human IAS disorders. We bioengineered sphincteric rings from human IAS smooth muscle cells (SMC) and investigated their response to cholinergic stimulation as well as investigated whether protein kinase C (PKC) and Rho kinase signaling pathways remain functional. METHODS: 3-Dimensional bioengineered ring (3DBR) model of the human IAS was constructed from isolated human IAS SMC obtained from surgery. Contractile properties and force generation in response to acetylcholine, PKC inhibitor calphostin-C, Rho/ROCK inhibitor Y-27632, permeable Rho/ROCK inhibitor c3-exoenzyme, and PKC activator PdBU was measured. RESULTS: The human IAS 3DBR has the essential characteristics of physiologically functional IAS; it generated a spontaneous myogenic basal tone, and the constructs were able to relax in response to relaxants and contract in response to contractile agents. The constructs generated dose-dependent force in response to acetylcholine. Basal tone was significantly reduced by calphostin-C but not with Y-27632. Acetylcholine-induced force generation was also significantly reduced by calphostin-C but not with Y-27632. PdBU generated force that was equal in magnitude to acetylcholine. Thus, calphostin-C inhibited PdBU-induced force generation, whereas Y-27632 and c3 exoenzyme did not. CONCLUSIONS: These data indicate that basal tone and acetylcholine-induced force generation depend on signaling through the PKC pathway in human IAS; PKC-mediated force generation is independent of the Rho/ROCK pathway. This human IAS 3DBR model can be used to study the pathophysiology associated with IAS malfunctions

    The human capital transition and the role of policy

    Get PDF
    Along with information and communication technology, infrastructure, and the innovation system, human capital is a key pillar of the knowledge economy with its scope for increasing returns. With this in mind, the purpose of this chapter is to investigate how industrialized economies managed to achieve the transition from low to high levels of human capital. The first phase of the human capital transition was the result of the interaction of supply and demand, triggered by technological change and boosted by the demands for (immaterial) services. The second phase of the human capital transition (i.e., mass education) resulted from enforced legislation and major public investment. The state’s aim to influence children’s beliefs appears to have been a key driver in public investment. Nevertheless, the roles governments played differed according to the developmental status and inherent socioeconomic and political characteristics of their countries. These features of the human capital transition highlight the importance of understanding governments’ incentives and roles in transitions

    The EMIL GBEINER Co.

    No full text

    Understanding the effectiveness of investments in irrigation system modernization: evidence from Madhya Pradesh, India

    No full text
    Investments in modernizing irrigation infrastructure are key to enhance water security for agriculture. However, outcomes of investments are insufficiently understood, limiting the future design of interventions. This article applies a fixed effects regression model to test whether modernization of irrigation systems in Madhya Pradesh leads to improvements in district-level yields and protection of yields against sub-basin rainfall variability. Findings suggest that investments fail to improve yields in districts with deficient rainfall and fail to buffer crops against monsoon variability, compared to control districts with no investments. Interventions should be designed to respond to the complexities of sub-basin rainfall variability

    HSP27 regulates fibroblast adhesion, motility, and matrix contraction

    No full text
    Heat shock protein 27 (HSP27) modulates actin-dependent cell functions in several systems. We hypothesized that HSP27 modulates wound contraction. Stably transfected fibroblast cell lines that overexpress HSP27 (SS12) or underexpress HSP27 (AS10) were established, and cell behaviors related to wound contraction were examined. First, fibroblast-populated collagen lattice (FPCL) contraction was examined because it has been studied as a wound-healing model. In floating FPCL contraction assays, SS12 cells caused increased contraction, whereas AS10 cells caused reduced contraction. Because floating matrix contraction is thought to be mediated by the tractional force of the cells, cell behaviors related to tractional force were examined. In collagen matrix, SS12 cells elongated faster and to a greater extent and contained longer stress fibers than control cells, whereas AS10 cells were slower to elongate than control cells. SS12 cells attached to the dishes more efficiently than the control, whereas AS10 cells attached less efficiently. Migration of SS12 cells on collagen-coated dishes was also enhanced, although AS10 cells did not differ from the control cells. In summary, HSP27 regulates fibroblast adhesion, elongation, and migration and the contraction of the floating matrix in a manner dependent on the level of its expression
    • …
    corecore