37 research outputs found

    Geometric coupling thresholds in a two-dimensional strip

    Full text link
    We consider the Laplacian in a strip R×(0,d)\mathbb{R}\times (0,d) with the boundary condition which is Dirichlet except at the segment of a length 2a2a of one of the boundaries where it is switched to Neumann. This operator is known to have a non-empty and simple discrete spectrum for any a>0a>0. There is a sequence 0<a1<a2<...0<a_1<a_2<... of critical values at which new eigenvalues emerge from the continuum when the Neumann window expands. We find the asymptotic behavior of these eigenvalues around the thresholds showing that the gap is in the leading order proportional to (a−an)2(a-a_n)^2 with an explicit coefficient expressed in terms of the corresponding threshold-energy resonance eigenfunction

    On spectrum of a Schroedinger operator with a fast oscillating compactly supported potential

    Full text link
    We study the phenomenon of an eigenvalue emerging from essential spectrum of a Schroedinger operator perturbed by a fast oscillating compactly supported potential. We prove the sufficient conditions for the existence and absence of such eigenvalue. If exists, we obtain the leading term of its asymptotics expansion.Comment: The article is originally written in Russian. The translation in English is made by D. Boriso

    Spectral analysis of the biharmonic operator subject to Neumann boundary conditions on dumbbell domains

    Get PDF
    We consider the biharmonic operator subject to homogeneous boundary conditions of Neumann type on a planar dumbbell domain which consists of two disjoint domains connected by a thin channel. We analyse the spectral behaviour of the operator, characterizing the limit of the eigenvalues and of the eigenprojections as the thickness of the channel goes to zero. In applications to linear elasticity, the fourth order operator under consideration is related to the deformation of a free elastic plate, a part of which shrinks to a segment. In contrast to what happens with the classical second order case, it turns out that the limiting equation is here distorted by a strange factor depending on a parameter which plays the role of the Poisson coefficient of the represented plate.Comment: To appear in "Integral Equations and Operator Theory

    Asymptotic behaviour of the spectrum of a waveguide with distant perturbations

    Full text link
    We consider the waveguide modelled by a nn-dimensional infinite tube. The operator we study is the Dirichlet Laplacian perturbed by two distant perturbations. The perturbations are described by arbitrary abstract operators ''localized'' in a certain sense, and the distance between their ''supports'' tends to infinity. We study the asymptotic behaviour of the discrete spectrum of such system. The main results are a convergence theorem and the asymptotics expansions for the eigenvalues. The asymptotic behaviour of the associated eigenfunctions is described as well. We also provide some particular examples of the distant perturbations. The examples are the potential, second order differential operator, magnetic Schroedinger operator, curved and deformed waveguide, delta interaction, and integral operator
    corecore