10,892 research outputs found
Avalanche in the Valley (Fermions, Anomaly and Unitarity in High-Energy Electroweak Interactions)
Problems related to fermions, unitarity and chiral anomaly in high energy
electroweak interactions, are investigated. Particular attention is paid to the
correct functional integration over fermion fields in the background of
instanton-anti\-instanton type configurations. This leads to an expansion of
correlation functions in terms of a small parameter, , when the
instanton-antiinstanton separation () is large compared to their sizes
(). Applying such a method to widely discussed cases of fermion-number
violation in the electroweak theory, we conclude that there are no theoretical
basis for expecting anomalous cross sections to become observable at energies
in the TeV region.Comment: 11 pages + 1 figure (not included
On the c-theorem in more than two dimensions
Several pieces of evidence have been recently brought up in favour of the
c-theorem in four and higher dimensions, but a solid proof is still lacking. We
present two basic results which could be useful for this search: i) the values
of the putative c-number for free field theories in any even dimension, which
illustrate some properties of this number; ii) the general form of three-point
function of the stress tensor in four dimensions, which shows some physical
consequences of the c-number and of the other trace-anomaly numbers.Comment: Latex, 7 pages, 1 tabl
New Optimization Methods for Converging Perturbative Series with a Field Cutoff
We take advantage of the fact that in lambda phi ^4 problems a large field
cutoff phi_max makes perturbative series converge toward values exponentially
close to the exact values, to make optimal choices of phi_max. For perturbative
series terminated at even order, it is in principle possible to adjust phi_max
in order to obtain the exact result. For perturbative series terminated at odd
order, the error can only be minimized. It is however possible to introduce a
mass shift in order to obtain the exact result. We discuss weak and strong
coupling methods to determine the unknown parameters. The numerical
calculations in this article have been performed with a simple integral with
one variable. We give arguments indicating that the qualitative features
observed should extend to quantum mechanics and quantum field theory. We found
that optimization at even order is more efficient that at odd order. We compare
our methods with the linear delta-expansion (LDE) (combined with the principle
of minimal sensitivity) which provides an upper envelope of for the accuracy
curves of various Pade and Pade-Borel approximants. Our optimization method
performs better than the LDE at strong and intermediate coupling, but not at
weak coupling where it appears less robust and subject to further improvements.
We also show that it is possible to fix the arbitrary parameter appearing in
the LDE using the strong coupling expansion, in order to get accuracies
comparable to ours.Comment: 10 pages, 16 figures, uses revtex; minor typos corrected, refs. adde
Self-energy and critical temperature of weakly interacting bosons
Using the exact renormalization group we calculate the momentum-dependent
self-energy Sigma (k) at zero frequency of weakly interacting bosons at the
critical temperature T_c of Bose-Einstein condensation in dimensions 3 <= D <
4. We obtain the complete crossover function interpolating between the critical
regime k << k_c, where Sigma (k) propto k^{2 - eta}, and the short-wavelength
regime k >> k_c, where Sigma (k) propto k^{2 (D-3)} in D> 3 and Sigma (k)
\propto ln (k/k_c) in D=3. Our approach yields the crossover scale k_c on the
same footing with a reasonable estimate for the critical exponent eta in D=3.
From our Sigma (k) we find for the interaction-induced shift of T_c in three
dimensions Delta T_c / T_c approx 1.23 a n^{1/3}, where a is the s-wave
scattering length and n is the density.Comment: 4 pages,1 figur
GRB970228 and the class of GRBs with an initial spikelike emission: do they follow the Amati relation?
On the basis of the recent understanding of GRB050315 and GRB060218, we
return to GRB970228, the first Gamma-Ray Burst (GRB) with detected afterglow.
We proposed it as the prototype for a new class of GRBs with "an occasional
softer extended emission lasting tenths of seconds after an initial spikelike
emission". Detailed theoretical computation of the GRB970228 light curves in
selected energy bands for the prompt emission are presented and compared with
observational BeppoSAX data. From our analysis we conclude that GRB970228 and
likely the ones of the above mentioned new class of GRBs are "canonical GRBs"
have only one peculiarity: they exploded in a galactic environment, possibly
the halo, with a very low value of CBM density. Here we investigate how
GRB970228 unveils another peculiarity of this class of GRBs: they do not
fulfill the "Amati relation". We provide a theoretical explanation within the
fireshell model for the apparent absence of such correlation for the GRBs
belonging to this new class.Comment: 5 pages, 3 figures, in the Proceedings of the "4th Italian-Sino
Workshop on Relativistic Astrophysics", held in Pescara, Italy, July 20-28,
2007, C.L. Bianco, S.-S. Xue, Editor
Non Perturbative Renormalization Group, momentum dependence of -point functions and the transition temperature of the weakly interacting Bose gas
We propose a new approximation scheme to solve the Non Perturbative
Renormalization Group equations and obtain the full momentum dependence of
-point functions. This scheme involves an iteration procedure built on an
extension of the Local Potential Approximation commonly used within the Non
Perturbative Renormalization Group. Perturbative and scaling regimes are
accurately reproduced. The method is applied to the calculation of the shift
in the transition temperature of the weakly repulsive Bose gas, a
quantity which is very sensitive to all momenta intermediate between these two
regions. The leading order result is in agreement with lattice calculations,
albeit with a theoretical uncertainty of about 25%. The next-to-leading order
differs by about 10% from the best accepted result
Self-Averaging in the Three Dimensional Site Diluted Heisenberg Model at the critical point
We study the self-averaging properties of the three dimensional site diluted
Heisenberg model. The Harris criterion \cite{critharris} states that disorder
is irrelevant since the specific heat critical exponent of the pure model is
negative. According with some analytical approaches \cite{harris}, this implies
that the susceptibility should be self-averaging at the critical temperature
(). We have checked this theoretical prediction for a large range of
dilution (including strong dilution) at critically and we have found that the
introduction of scaling corrections is crucial in order to obtain
self-averageness in this model. Finally we have computed critical exponents and
cumulants which compare very well with those of the pure model supporting the
Universality predicted by the Harris criterion.Comment: 11 pages, 11 figures, 14 tables. New analysis (scaling corrections in
the g2=0 scenario) and new numerical simulations. Title and conclusions
chang
- …
