10,891 research outputs found

    Avalanche in the Valley (Fermions, Anomaly and Unitarity in High-Energy Electroweak Interactions)

    Full text link
    Problems related to fermions, unitarity and chiral anomaly in high energy electroweak interactions, are investigated. Particular attention is paid to the correct functional integration over fermion fields in the background of instanton-anti\-instanton type configurations. This leads to an expansion of correlation functions in terms of a small parameter, ρ/R\rho/R, when the instanton-antiinstanton separation (RR) is large compared to their sizes (ρ\rho). Applying such a method to widely discussed cases of fermion-number violation in the electroweak theory, we conclude that there are no theoretical basis for expecting anomalous cross sections to become observable at energies in the 1010 TeV region.Comment: 11 pages + 1 figure (not included

    On the c-theorem in more than two dimensions

    Get PDF
    Several pieces of evidence have been recently brought up in favour of the c-theorem in four and higher dimensions, but a solid proof is still lacking. We present two basic results which could be useful for this search: i) the values of the putative c-number for free field theories in any even dimension, which illustrate some properties of this number; ii) the general form of three-point function of the stress tensor in four dimensions, which shows some physical consequences of the c-number and of the other trace-anomaly numbers.Comment: Latex, 7 pages, 1 tabl

    New Optimization Methods for Converging Perturbative Series with a Field Cutoff

    Full text link
    We take advantage of the fact that in lambda phi ^4 problems a large field cutoff phi_max makes perturbative series converge toward values exponentially close to the exact values, to make optimal choices of phi_max. For perturbative series terminated at even order, it is in principle possible to adjust phi_max in order to obtain the exact result. For perturbative series terminated at odd order, the error can only be minimized. It is however possible to introduce a mass shift in order to obtain the exact result. We discuss weak and strong coupling methods to determine the unknown parameters. The numerical calculations in this article have been performed with a simple integral with one variable. We give arguments indicating that the qualitative features observed should extend to quantum mechanics and quantum field theory. We found that optimization at even order is more efficient that at odd order. We compare our methods with the linear delta-expansion (LDE) (combined with the principle of minimal sensitivity) which provides an upper envelope of for the accuracy curves of various Pade and Pade-Borel approximants. Our optimization method performs better than the LDE at strong and intermediate coupling, but not at weak coupling where it appears less robust and subject to further improvements. We also show that it is possible to fix the arbitrary parameter appearing in the LDE using the strong coupling expansion, in order to get accuracies comparable to ours.Comment: 10 pages, 16 figures, uses revtex; minor typos corrected, refs. adde

    Self-energy and critical temperature of weakly interacting bosons

    Full text link
    Using the exact renormalization group we calculate the momentum-dependent self-energy Sigma (k) at zero frequency of weakly interacting bosons at the critical temperature T_c of Bose-Einstein condensation in dimensions 3 <= D < 4. We obtain the complete crossover function interpolating between the critical regime k << k_c, where Sigma (k) propto k^{2 - eta}, and the short-wavelength regime k >> k_c, where Sigma (k) propto k^{2 (D-3)} in D> 3 and Sigma (k) \propto ln (k/k_c) in D=3. Our approach yields the crossover scale k_c on the same footing with a reasonable estimate for the critical exponent eta in D=3. From our Sigma (k) we find for the interaction-induced shift of T_c in three dimensions Delta T_c / T_c approx 1.23 a n^{1/3}, where a is the s-wave scattering length and n is the density.Comment: 4 pages,1 figur

    GRB970228 and the class of GRBs with an initial spikelike emission: do they follow the Amati relation?

    Full text link
    On the basis of the recent understanding of GRB050315 and GRB060218, we return to GRB970228, the first Gamma-Ray Burst (GRB) with detected afterglow. We proposed it as the prototype for a new class of GRBs with "an occasional softer extended emission lasting tenths of seconds after an initial spikelike emission". Detailed theoretical computation of the GRB970228 light curves in selected energy bands for the prompt emission are presented and compared with observational BeppoSAX data. From our analysis we conclude that GRB970228 and likely the ones of the above mentioned new class of GRBs are "canonical GRBs" have only one peculiarity: they exploded in a galactic environment, possibly the halo, with a very low value of CBM density. Here we investigate how GRB970228 unveils another peculiarity of this class of GRBs: they do not fulfill the "Amati relation". We provide a theoretical explanation within the fireshell model for the apparent absence of such correlation for the GRBs belonging to this new class.Comment: 5 pages, 3 figures, in the Proceedings of the "4th Italian-Sino Workshop on Relativistic Astrophysics", held in Pescara, Italy, July 20-28, 2007, C.L. Bianco, S.-S. Xue, Editor

    Non Perturbative Renormalization Group, momentum dependence of nn-point functions and the transition temperature of the weakly interacting Bose gas

    Full text link
    We propose a new approximation scheme to solve the Non Perturbative Renormalization Group equations and obtain the full momentum dependence of nn-point functions. This scheme involves an iteration procedure built on an extension of the Local Potential Approximation commonly used within the Non Perturbative Renormalization Group. Perturbative and scaling regimes are accurately reproduced. The method is applied to the calculation of the shift ΔTc\Delta T_c in the transition temperature of the weakly repulsive Bose gas, a quantity which is very sensitive to all momenta intermediate between these two regions. The leading order result is in agreement with lattice calculations, albeit with a theoretical uncertainty of about 25%. The next-to-leading order differs by about 10% from the best accepted result

    Self-Averaging in the Three Dimensional Site Diluted Heisenberg Model at the critical point

    Full text link
    We study the self-averaging properties of the three dimensional site diluted Heisenberg model. The Harris criterion \cite{critharris} states that disorder is irrelevant since the specific heat critical exponent of the pure model is negative. According with some analytical approaches \cite{harris}, this implies that the susceptibility should be self-averaging at the critical temperature (Rχ=0R_\chi=0). We have checked this theoretical prediction for a large range of dilution (including strong dilution) at critically and we have found that the introduction of scaling corrections is crucial in order to obtain self-averageness in this model. Finally we have computed critical exponents and cumulants which compare very well with those of the pure model supporting the Universality predicted by the Harris criterion.Comment: 11 pages, 11 figures, 14 tables. New analysis (scaling corrections in the g2=0 scenario) and new numerical simulations. Title and conclusions chang
    corecore