24,987 research outputs found
Angular Momentum Distribution Function of the Laughlin Droplet
We have evaluated the angular-momentum distribution functions for finite
numbers of electrons in Laughlin states. For very small numbers of electrons
the angular-momentum state occupation numbers have been evaluated exactly while
for larger numbers of electrons they have been obtained from Monte-Carlo
estimates of the one-particle density matrix. An exact relationship, valid for
any number of electrons, has been derived for the ratio of the occupation
numbers of the two outermost orbitals of the Laughlin droplet and is used to
test the accuracy of the MC calculations. We compare the occupation numbers
near the outer edges of the droplets with predictions based on the chiral
Luttinger liquid picture of Laughlin state edges and discuss the surprisingly
large oscillations in occupation numbers which occur for angular momenta far
from the edge.Comment: 11 pages of RevTeX, 2 figures available on request. IUCM93-00
The large area crop inventory experiment: A major demonstration of space remote sensing
Strategies are presented in agricultural technology to increase the resistance of crops to a wider range of meteorological conditions in order to reduce year-to-year variations in crop production. Uncertainties in agricultral production, together with the consumer demands of an increasing world population, have greatly intensified the need for early and accurate annual global crop production forecasts. These forecasts must predict fluctuation with an accuracy, timeliness and known reliability sufficient to permit necessary social and economic adjustments, with as much advance warning as possible
"Orphan" -ray Flares and Stationary Sheaths of Blazar Jets
Blazars exhibit flares across the entire electromagnetic spectrum. Many
-ray flares are highly correlated with flares detected at longer
wavelengths; however, a small subset appears to occur in isolation, with little
or no correlated variability at longer wavelengths. These "orphan" -ray
flares challenge current models of blazar variability, most of which are unable
to reproduce this type of behavior. Macdonald et al. have developed the Ring of
Fire model to explain the origin of orphan -ray flares from within
blazar jets. In this model, electrons contained within a blob of plasma moving
relativistically along the spine of the jet inverse-Compton scatter synchrotron
photons emanating off of a ring of shocked sheath plasma that enshrouds the jet
spine. As the blob propagates through the ring, the scattering of the ring
photons by the blob electrons creates an orphan -ray flare. This model
was successfully applied to modeling a prominent orphan -ray flare
observed in the blazar PKS 1510089. To further support the plausibility of
this model, Macdonald et al. presented a stacked radio map of PKS 1510089
containing the polarimetric signature of a sheath of plasma surrounding the
spine of the jet. In this paper, we extend our modeling and stacking techniques
to a larger sample of blazars: 3C 273, 4C 7101, 3C 279, 1055018, CTA 102,
and 3C 345, the majority of which have exhibited orphan -ray flares. We
find that the model can successfully reproduce these flares, while our stacked
maps reveal the existence of jet sheaths within these blazars.Comment: 19 pages, 27 figures, accepted for publication in ApJ. arXiv admin
note: text overlap with arXiv:1505.0123
Development of a portable precision landing system
A portable, tactical approach guidance (PTAG) system, based on a novel, X-band, precision approach concept, was developed and flight tested as a part of NASA's Rotorcraft All-Weather Operations Research Program. The system is based on state-of-the-art X-band technology and digital processing techniques. The PTAG airborne hardware consists of an X-band receiver and a small microprocessor installed in conjunction with the aircraft instrument landing system (ILS) receiver. The microprocessor analyzes the X-band, PTAG pulses and outputs ILS compatible localizer and glide slope signals. The ground stations are inexpensive, portable units, each weighing less than 85 lb, including battery, that can be quickly deployed at a landing site. Results from the flight test program show that PTAG has a significant potential for providing tactical aircraft with low cost, portable, precision instrument approach capability
Area products for stationary black hole horizons
Area products for multi-horizon stationary black holes often have intriguing
properties, and are often (though not always) independent of the mass of the
black hole itself (depending only on various charges, angular momenta, and
moduli). Such products are often formulated in terms of the areas of inner
(Cauchy) horizons and outer (event) horizons, and sometimes include the effects
of unphysical "virtual" horizons. But the conjectured mass-independence
sometimes fails. Specifically, for the Schwarzschild-de Sitter [Kottler] black
hole in (3+1) dimensions it is shown by explicit exact calculation that the
product of event horizon area and cosmological horizon area is not mass
independent. (Including the effect of the third "virtual" horizon does not
improve the situation.) Similarly, in the Reissner-Nordstrom-anti-de Sitter
black hole in (3+1) dimensions the product of inner (Cauchy) horizon area and
event horizon area is calculated (perturbatively), and is shown to be not mass
independent. That is, the mass-independence of the product of physical horizon
areas is not generic. In spherical symmetry, whenever the quasi-local mass m(r)
is a Laurent polynomial in aerial radius, r=sqrt{A/4\pi}, there are
significantly more complicated mass-independent quantities, the elementary
symmetric polynomials built up from the complete set of horizon radii (physical
and virtual). Sometimes it is possible to eliminate the unphysical virtual
horizons, constructing combinations of physical horizon areas that are mass
independent, but they tend to be considerably more complicated than the simple
products and related constructions currently being mooted in the literature.Comment: V1: 16 pages; V2: 9 pages (now formatted in PRD style). Minor change
in title. Extra introduction, background, discussion. Several additional
references; other references updated. Minor typos fixed. This version
accepted for publication in PRD; V3: Minor typos fixed. Published versio
Graphene: Kinks, Superlattices, Landau levels, and Magnetotransport
We review recent work on superlattices in monolayer and bilayer graphene. We
highlight the role of the quasiparticle chirality in generating new Dirac
fermion modes with tunable anisotropic velocities in one dimensional (1D)
superlattices in both monolayer and bilayer graphene. We discuss the structure
of the Landau levels and magnetotransport in such superlattices over a wide
range of perpendicular (orbital) magnetic fields. In monolayer graphene, we
show that an orbital magnetic field can reverse the anisotropy of the transport
imposed by the superlattice potential, suggesting possible switching-type
device applications. We also consider topological modes localized at a kink in
an electric field applied perpendicular to bilayer graphene, and show how
interactions convert these modes into a two-band Luttinger liquid with tunable
Luttinger parameters. The band structures of electric field superlattices in
bilayer graphene (with or without a magnetic field) are shown to arise
naturally from a coupled array of such topological modes. We briefly review
some bandstructure results for 2D superlattices. We conclude with a discussion
of recent tunneling and transport experiments and point out open issues.Comment: Invited Review Article for Special Issue on Graphene, References
added, Typos correcte
The quantum Casimir operators of \Uq and their eigenvalues
We show that the quantum Casimir operators of the quantum linear group
constructed in early work of Bracken, Gould and Zhang together with one extra
central element generate the entire center of \Uq. As a by product of the
proof, we obtain intriguing new formulae for eigenvalues of these quantum
Casimir operators, which are expressed in terms of the characters of a class of
finite dimensional irreducible representations of the classical general linear
algebra.Comment: 10 page
Charge and momentum transfer in supercooled melts: Why should their relaxation times differ?
The steady state values of the viscosity and the intrinsic ionic-conductivity
of quenched melts are computed, in terms of independently measurable
quantities. The frequency dependence of the ac dielectric response is
estimated. The discrepancy between the corresponding characteristic relaxation
times is only apparent; it does not imply distinct mechanisms, but stems from
the intrinsic barrier distribution for -relaxation in supercooled
fluids and glasses. This type of intrinsic ``decoupling'' is argued not to
exceed four orders in magnitude, for known glassformers. We explain the origin
of the discrepancy between the stretching exponent , as extracted from
and the dielectric modulus data. The actual width of the
barrier distribution always grows with lowering the temperature. The contrary
is an artifact of the large contribution of the dc-conductivity component to
the modulus data. The methodology allows one to single out other contributions
to the conductivity, as in ``superionic'' liquids or when charge carriers are
delocalized, implying that in those systems, charge transfer does not require
structural reconfiguration.Comment: submitted to J Chem Phy
Numerical Tests of the Chiral Luttinger Liquid Theory for Fractional Hall Edges
We report on microscopic numerical studies which support the chiral Luttinger
liquid theory of the fractional Hall edge proposed by Wen. Our calculations are
based in part on newly proposed and accurate many-body trial wavefunctions for
the low-energy edge excitations of fractional incompressible states.Comment: 12 pages + 1 figure, Revte
- …