18 research outputs found

    An alternative well-posedness property and static spacetimes with naked singularities

    Full text link
    In the first part of this paper, we show that the Cauchy problem for wave propagation in some static spacetimes presenting a singular time-like boundary is well posed, if we only demand the waves to have finite energy, although no boundary condition is required. This feature does not come from essential self-adjointness, which is false in these cases, but from a different phenomenon that we call the alternative well-posedness property, whose origin is due to the degeneracy of the metric components near the boundary. Beyond these examples, in the second part, we characterize the type of degeneracy which leads to this phenomenon.Comment: 34 pages, 3 figures. Accepted for publication in Class. Quantum Gra

    Dirac Operator on a disk with global boundary conditions

    Get PDF
    We compute the functional determinant for a Dirac operator in the presence of an Abelian gauge field on a bidimensional disk, under global boundary conditions of the type introduced by Atiyah-Patodi-Singer. We also discuss the connection between our result and the index theorem.Comment: RevTeX, 11 pages. References adde

    Determinants of Dirac operators with local boundary conditions

    Get PDF
    We study functional determinants for Dirac operators on manifolds with boundary. We give, for local boundary conditions, an explicit formula relating these determinants to the corresponding Green functions. We finally apply this result to the case of a bidimensional disk under bag-like conditions.Comment: standard LaTeX, 24 pages. To appear in Jour. Math. Phy

    Abelian and Non-Abelian Induced Parity Breaking Terms at Finite Temperature

    Full text link
    We compute the exact canonically induced parity breaking part of the effective action for 2+1 massive fermions in particular Abelian and non Abelian gauge field backgrounds. The method of computation resorts to the chiral anomaly of the dimensionally reduced theory.Comment: 13 pages, RevTeX, no figure

    Induced Parity Breaking Term at Finite Temperature

    Get PDF
    We compute the exact induced parity-breaking part of the effective action for 2+1 massive fermions in QED3QED_3 at finite temperature by calculating the fermion determinant in a particular background. The result confirms that gauge invariance of the effective action is respected even when large gauge transformations are considered.Comment: to be published in Physical Review Letters. 5 pages, Revtex, no figure

    Four-point Green functions in the Schwinger Model

    Get PDF
    The evaluation of the 4-point Green functions in the 1+1 Schwinger model is presented both in momentum and coordinate space representations. The crucial role in our calculations play two Ward identities: i) the standard one, and ii) the chiral one. We demonstrate how the infinite set of Dyson-Schwinger equations is simplified, and is so reduced, that a given n-point Green function is expressed only through itself and lower ones. For the 4-point Green function, with two bosonic and two fermionic external `legs', a compact solution is given both in momentum and coordinate space representations. For the 4-fermion Green function a selfconsistent equation is written down in the momentum representation and a concrete solution is given in the coordinate space. This exact solution is further analyzed and we show that it contains a pole corresponding to the Schwinger boson. All detailed considerations given for various 4-point Green functions are easily generizable to higher functions.Comment: In Revtex, 12 pages + 2 PostScript figure

    Induced Parity Breaking Term in Arbitrary Odd Dimensions at Finite Temperature

    Get PDF
    We calculate the exact parity odd part of the effective action (Γodd2d+1\Gamma_{odd}^{2d+1}) for massive Dirac fermions in 2d+1 dimensions at finite temperature, for a certain class of gauge field configurations. We consider first Abelian external gauge fields, and then we deal with the case of a non-Abelian gauge group containing an Abelian U(1) subgroup. For both cases, it is possible to show that the result depends on topological invariants of the gauge field configurations, and that the gauge transformation properties of Γodd2d+1\Gamma_{odd}^{2d+1} depend only on those invariants and on the winding number of the gauge transformation.Comment: 10 pages, revtex, no figure

    Spinons and parafermions in fermion cosets

    Get PDF
    We introduce a set of gauge invariant fermion fields in fermionic coset models and show that they play a very central role in the description of several Conformal Field Theories (CFT's). In particular we discuss the explicit realization of primaries and their OPE in unitary minimal models, parafermion fields in ZkZ_k CFT's and that of spinon fields in SU(N)k,k=1SU(N)_k, k=1 Wess-Zumino-Witten models (WZW) theories. The higher level case (k>1k>1) will be briefly discussed. Possible applications to QHE systems and spin-ladder systems are addressed.Comment: 6 pages, Latex file. Invited talk at International Seminar dedicated to the memory of D.V.Volkov, Kharkov, January 5-7, 199

    Multiflavor Correlation Functions in non-Abelian Gauge Theories at Finite Density in two dimensions

    Get PDF
    We compute vacuum expectation values of products of fermion bilinears for two-dimensional Quantum Chromodynamics at finite flavored fermion densities. We introduce the chemical potential as an external charge distribution within the path-integral approach and carefully analyse the contribution of different topological sectors to fermion correlators. We show the existence of chiral condensates exhibiting an oscillatory inhomogeneous behavior as a function of a chemical potential matrix. This result is exact and goes in the same direction as the behavior found in QCD_4 within the large N approximation.Comment: 28 pages Latex (3 pages added and other minor changes) to appear in Phys.Rev.

    Induced parity violating thermal effective action for (2+1)-dimensional fermions interacting with a non-Abelian background

    Full text link
    We study the parity breaking effective action in 2+1 dimensions, generated, at finite temperature, by massive fermions interacting with a non-Abelian gauge background. We explicitly calculate, in the static limit, parity violating amplitudes up to the seven point function, which allows us to determine the corresponding effective actions. We derive the exact parity violating effective action when E⃗=0\vec{E}=0. When E⃗≠0\vec{E}\neq 0, there are families of terms that can be determined order by order in perturbation theory. We attempt to generalize our results to non-static backgrounds through the use of time ordered exponentials and prove gauge invariance, both {\it small} and {\it large}, of the resulting effective action. We also point out some open questions that need to be further understood.Comment: 24 pages. Version to be published in Physical Review D with an added appendix on the consequences of thermal gauge invarianc
    corecore