262 research outputs found
Effect of weightlessness conditions on the somatic embryogenesis in the culture of carrot cells
A carrot cell culture seeded in Petri dishes in the United States and transported to the USSR was subjected to weightlessness for 20 days during the flight of Kosmos 782. The controls were cultures placed on a centrifuge (1 g) inside the satellite and cultures left on ground in the U.S.S.R. and the United States. A count of structures in the dishes after the flight showed that the number of developing embryonic structures and the extent of their differentiation in weightlessness did not reliably differ from the number and extent of differentiation in structures developed on the ground. Structures with long roots developed in weightlessness. Analysis of the root zones showed that these roots differed by the increased size of the zone of differentiated cells. The increased size of the zones of differentiated cells can indicate earlier development of embryonic structures
Spectral Representation for the Effective Macroscopic Response of a Polycrystal: Application to Third-Order Nonlinear Susceptibility
Erratum:
In our paper, we show that the spectral representation for isotropic
two-component composites also applies to uniaxial polycrystals. We have learned
that this result was, in fact, first conjectured by G.W. Milton. While our
derivation is more detailed, our result for the spectral function is the same
as Milton's. We very much regret not having been aware of this work at the time
of writing our paper.
Original abstract:
We extend the spectral theory used for the calculation of the effective
linear response functions of composites to the case of a polycrystalline
material with uniaxially anisotropic microscopic symmetry. As an application,
we combine these results with a nonlinear decoupling approximation as modified
by Ma et al., to calculate the third-order nonlinear optical susceptibility of
a uniaxial polycrystal, assuming that the effective dielectric function of the
polycrystal can be calculated within the effective-medium approximation.Comment: v2 includes erratum and the original preprin
Three-dimensional structure of aryl methyl sulfoxides and α-halomethyl aryl sulfoxides
1. Aryl methyl sulfoxides have a conformation close to an overlapping location of the S-O bond and the plane of the aromatic ring. 2. For the α-halomethyl aryl sulfoxides, we have established an equilibrium of three conformers with predominance of gauche forms. © 1982 Plenum Publishing Corporation
Characterization of high-temperature PbTe p-n junctions prepared by thermal diffusion and by ion-implantation
We describe here the characteristics of two types of high-quality PbTe
p-n-junctions, prepared in this work: (1) by thermal diffusion of In4Te3 gas
(TDJ), and (2) by ion implantation (implanted junction, IJ) of In (In-IJ) and
Zn (Zn-IJ). The results, as presented here, demonstrate the high quality of
these PbTe diodes. Capacitance-voltage and current-voltage characteristics have
been measured. The measurements were carried out over a temperature range from
~ 10 K to ~ 180 K. The latter was the highest temperature, where the diode
still demonstrated rectifying properties. This maximum operating temperature is
higher than any of the earlier reported results.
The saturation current density, J0, in both diode types, was ~ 10^-5 A/cm2 at
80 K, while at 180 K J0 ~ 10^-1 A/cm2 in TDJ and ~ 1 A/cm2 in both
ion-implanted junctions. At 80 K the reverse current started to increase
markedly at a bias of ~ 400 mV for TDJ, and at ~550 mV for IJ. The ideality
factor n was about 1.5-2 for both diode types at 80 K. The analysis of the C-V
plots shows that the junctions in both diode types are linearly graded. The
analysis of the C-V plots allows also determining the height of the junction
barrier, the concentrations and the concentration gradient of the impurities,
and the temperature dependence of the static dielectric constant. The
zero-bias-resistance x area products (R0Ae) at 80 K are: 850 OHMcm2 for TDJ,
250 OHMcm2 for In-IJ, and ~ 80 OHMcm2 for Zn-IJ, while at 180 K R0Ae ~ 0.38
OHMcm2 for TDJ, and ~ 0.1 OHMcm2 for IJ. The estimated detectivity is: D* ~
10^10 cmHz^(1/2)/W up to T=140 K, determined mainly by background radiation,
while at T=180 K, D* decreases to 108-107 cmHz^(1/2)/W, and is determined by
the Johnson noise
Conformations of the methyl and aryl esters of the arylsulfonic acids
1. The substituted methylarylsulfonates and arylarylsulfonates exist as mixtures of trans and gauche conformers, the latter predominating at equilibrium (∼70%). 2. The angle of aryl group rotation relative to the Csp3-S-O plane is 43° in the methylphenylsulfonates and the methyl-p-tolylsulfonates and 75° in the methyl-p-bromophenylsulfonates. 3. As a result of electron-acceptor effects from the SO2 group, the S-O-C plane of the arylsulfonic acids esters are almost perpendicular to the aromatic ring. © 1980 Plenum Publishing Corporation
Vibrational spectra, dipole moments, and conformations of acylic sulfoxides
Acyclic aliphatic and aliphatic-aromatic sulfoxides exist in the form of equilibrium mixtures of conformations. In the case of bromomethyl methyl sulfoxide, a conformational equilibrium of three forms is observed, and an equilibrium between two forms basically exists for chloromethyl methyl sulfoxide and halomethyl aryl sulfoxides. © 1981 Plenum Publishing Corporation
Theory of current-driven motion of Skyrmions and spirals in helical magnets
We study theoretically the dynamics of the spin textures, i.e., Skyrmion
crystal (SkX) and spiral structure (SS), in two-dimensional helical magnets
under external current. By numerically solving the Landau-Lifshitz-Gilbert
equation, it is found that (i) the critical current density of the motion is
much lower for SkX compared with SS in agreement with the recent experiment,
(ii) there is no intrinsic pinning effect for SkX and the deformation of the
internal structure of Skyrmion reduces the pinning effect dramatically, (iii)
the Bragg intensity of SkX shows strong time-dependence as can be observed by
neutron scattering experiment.Comment: 4 pages, 3 figure
Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase
Rheb is a conserved and widespread Ras-like GTPase involved in cell growth regulation mediated by the (m)TORC1 kinase complex and implicated in tumourigenesis in humans. Rheb function depends on its association with membranes via prenylated C-terminus, a mechanism shared with many other eukaryotic GTPases. Strikingly, our analysis of a phylogenetically rich sample of Rheb sequences revealed that in multiple lineages this canonical and ancestral membrane attachment mode has been variously altered. The modifications include: (1) accretion to the N-terminus of two different phosphatidylinositol 3-phosphate-binding domains, PX in Cryptista (the fusion being the first proposed synapomorphy of this clade), and FYVE in Euglenozoa and the related undescribed flagellate SRT308; (2) acquisition of lipidic modifications of the N-terminal region, namely myristoylation and/or S-palmitoylation in seven different protist lineages; (3) acquisition of S-palmitoylation in the hypervariable C-terminal region of Rheb in apusomonads, convergently to some other Ras family proteins; (4) replacement of the C-terminal prenylation motif with four transmembrane segments in a novel Rheb paralog in the SAR clade; (5) loss of an evident C-terminal membrane attachment mechanism in Tremellomycetes and some Rheb paralogs of Euglenozoa. Rheb evolution is thus surprisingly dynamic and presents a spectacular example of molecular tinkering
Polygonal Structures in the Gaseous Disk: Numerical Simulations
The results of numerical simulations of a gaseous disk in the potential of a
stellar spiral density wave are presented. The conditions under which
straightened spiral arm segments (rows) form in the gas component are studied.
These features of the spiral structure were identified in a series of works by
A.D. Chernin with coauthors. Gas-dynamic simulations have been performed for a
wide range of model parameters: the pitch angle of the spiral pattern, the
amplitude of the stellar spiral density wave, the disk rotation speed, and the
temperature of the gas component. The results of 2D- and 3D-disk simulations
are compared. The rows in the numerical simulations are shown to be an
essentially nonstationary phenomenon. A statistical analysis of the
distribution of geometric parameters for spiral patterns with rows in the
observed galaxies and the constructed hydrodynamic models shows good agreement.
In particular, the numerical simulations and observations of galaxies give
for the average angles between straight segments.Comment: 22 pages, 10 figure
Dynamics of Gaseous Disks in a Non-axisymmetric Dark Halo
The dynamics of a galactic disk in a non-axisymmetric (triaxial) dark halo is
studied in detail using high-resolution, numerical, hydrodynamical models. A
long-lived, two-armed spiral pattern is generated for a wide range of
parameters. The spiral structure is global, and the number of turns can be two
or three, depending on the model parameters. The morphology and kinematics of
the spiral pattern are studied as functions of the halo and disk parameters.
The spiral structure rotates slowly, and its angular velocity varies
quasi-periodically. Models with differing relative halo masses, halo semi-axis
ratios, distributions of matter in the disk, Mach numbers in the gaseous
component, and angular rotational velocities of their halos are considered.Comment: 22 pages, 11 figure
- …