19,055 research outputs found
Calibration, navigation, and registration of MAMS data for FIFE
The International Satellite Land Surface Climatology Project (ISLSCP) was conducted to study the interaction of the atmosphere with the land surface and the research problems associated with the interpretation of satellite data over the Earth's land surface. The experimental objectives of the First ISLSCP Field Experiment (FIFE) were the simultaneous acquisition of satellite, atmospheric, and surface data and to use these data to understand the processes controlling energy/mass exchange at the surface. The experiment site is a 15 x 15 km area southeast of Manhattan, Kansas, intersected by Interstate 70 and Kansas highway 177. The Konza Prairie portion is 5 x 5 km and is a controlled experiment site consisting primarily of native tall grass prairie vegetation. The remainder of the site is grazing and farm land with trees along creek beds that are scattered over the area. Airborne multispectral imagery from the Multispectral Atmospheric Mapping Sensor (MAMS) was collected over this region on two days during Intensive Field Campaign-1 (1FC-1) to study the time and space variability of remotely-sensed geophysical parameters. These datasets consist of multiple overflights covering about a 60-min period during late morning on June 4, 1987 and shortly after dark on the following day. Image data from each overpass were calibrated and Earth located with respect to each other using aircraft inertial navigation system parameters and ground control points. These were the first MAMS flights made with 10-bit thermal data
Automated mesoscale winds derived from GOES multispectral imagery
An automated technique for extracting mesoscale winds from sequences of GOES VISSR image pairs was developed, tested and configured for quasi-real time/research applications on a computing system which gives mesoscale wind estimates at the highest spatial/temporal resolution possible from the VISSR imagery down to a wind vector separation of 10 km. Preprocessing of imagery using IR resampling, VIS edge preserving filtering, and reduced VIS resolution averaging improved height assignments and vector extraction for 10, 15, and 30 min imagery. An objective quality control system provides much greater than 99% accuracy in eliminating questionable wind estimates. Automated winds generally have better spatial coverage and density, and have random error estimates half as large as the manual winds. Dynamical analysis of cloud wind divergence revealed temporally consistent convergence centers on the meso beta scale that are highly correlated with on going and future developing convective storms. The entire system of computer codes was successfully vectorized for execution on an array processor resulting in job turnaround in less than one hour
Reactions of C({\it a}) with selected saturated alkanes: A temperature dependence study
We present a temperature dependence study on the gas phase reactions of the
C({\it a}) radical with a selected series of saturated alkanes
(CH, CH, n-CH, i-CH, and n-CH) by
means of pulsed laser photolysis/laser-induced fluorescence technique. The
bimolecular rate constants for these reactions were obtained between 298 and
673 K. A pronounced negative temperature effect was observed for n-CH,
i-CH, and n-CH and interpreted in terms of steric hindrance
of the more reactive secondary or tertiary C-H bonds by less reactive CH
groups. Detailed analysis of our experimental results reveals quantitatively
the temperature dependence of reactivities for the primary, secondary, and
tertiary C-H bonds in these saturated alkanes and further lends support to a
mechanism of hydrogen abstraction.Comment: 26 pages, 8 figures, 1 table, 30 references; accepted to JC
Budget Feasible Mechanisms for Experimental Design
In the classical experimental design setting, an experimenter E has access to
a population of potential experiment subjects , each
associated with a vector of features . Conducting an experiment
with subject reveals an unknown value to E. E typically assumes
some hypothetical relationship between 's and 's, e.g., , and estimates from experiments, e.g., through linear
regression. As a proxy for various practical constraints, E may select only a
subset of subjects on which to conduct the experiment.
We initiate the study of budgeted mechanisms for experimental design. In this
setting, E has a budget . Each subject declares an associated cost to be part of the experiment, and must be paid at least her cost. In
particular, the Experimental Design Problem (EDP) is to find a set of
subjects for the experiment that maximizes V(S) = \log\det(I_d+\sum_{i\in
S}x_i\T{x_i}) under the constraint ; our objective
function corresponds to the information gain in parameter that is
learned through linear regression methods, and is related to the so-called
-optimality criterion. Further, the subjects are strategic and may lie about
their costs.
We present a deterministic, polynomial time, budget feasible mechanism
scheme, that is approximately truthful and yields a constant factor
approximation to EDP. In particular, for any small and , we can construct a (12.98, )-approximate mechanism that is
-truthful and runs in polynomial time in both and
. We also establish that no truthful,
budget-feasible algorithms is possible within a factor 2 approximation, and
show how to generalize our approach to a wide class of learning problems,
beyond linear regression
Effect of nonlocal interactions on the disorder-induced zero-bias anomaly in the Anderson-Hubbard model
To expand the framework available for interpreting experiments on disordered
strongly correlated systems, and in particular to explore further the
strong-coupling zero-bias anomaly found in the Anderson-Hubbard model, we ask
how this anomaly responds to the addition of nonlocal electron-electron
interactions. We use exact diagonalization to calculate the single-particle
density of states of the extended Anderson-Hubbard model. We find that for weak
nonlocal interactions the form of the zero-bias anomaly is qualitatively
unchanged. The energy scale of the anomaly continues to be set by an effective
hopping amplitude renormalized by the nonlocal interaction. At larger values of
the nonlocal interaction strength, however, hopping ceases to be a relevant
energy scale and higher energy features associated with charge correlations
dominate the density of states.Comment: 9 pages, 7 figure
Multiplicative renormalizability and quark propagator
The renormalized Dyson-Schwinger equation for the quark propagator is
studied, in Landau gauge, in a novel truncation which preserves multiplicative
renormalizability. The renormalization constants are formally eliminated from
the integral equations, and the running coupling explicitly enters the kernels
of the new equations. To construct a truncation which preserves multiplicative
renormalizability, and reproduces the correct leading order perturbative
behavior, non-trivial cancellations involving the full quark-gluon vertex are
assumed in the quark self-energy loop. A model for the running coupling is
introduced, with infrared fixed point in agreement with previous
Dyson-Schwinger studies of the gauge sector, and with correct logarithmic tail.
Dynamical chiral symmetry breaking is investigated, and the generated quark
mass is of the order of the extension of the infrared plateau of the coupling,
and about three times larger than in the Abelian approximation, which violates
multiplicative renormalizability. The generated scale is of the right size for
hadronic phenomenology, without requiring an infrared enhancement of the
running coupling.Comment: 17 pages; minor corrections, comparison to lattice results added;
accepted for publication in Phys. Rev.
Multiplicative renormalizability of gluon and ghost propagators in QCD
We reformulate the coupled set of continuum equations for the renormalized
gluon and ghost propagators in QCD, such that the multiplicative
renormalizability of the solutions is manifest, independently of the specific
form of full vertices and renormalization constants. In the Landau gauge, the
equations are free of renormalization constants, and the renormalization point
dependence enters only through the renormalized coupling and the renormalized
propagator functions. The structure of the equations enables us to devise novel
truncations with solutions that are multiplicatively renormalizable and agree
with the leading order perturbative results. We show that, for infrared power
law behaved propagators, the leading infrared behavior of the gluon equation is
not solely determined by the ghost loop, as concluded in previous studies, but
that the gluon loop, the three-gluon loop, the four-gluon loop, and even
massless quarks also contribute to the infrared analysis. In our new Landau
gauge truncation, the combination of gluon and ghost loop contributions seems
to reject infrared power law solutions, but massless quark loops illustrate how
additional contributions to the gluon vacuum polarization could reinstate these
solutions. Moreover, a schematic study of the three-gluon and four-gluon loops
shows that they too need to be considered in more detail before a definite
conclusion about the existence of infrared power behaved gluon and ghost
propagators can be reached.Comment: 13 pages, 1 figure, submitted to Phys. Rev.
A report on SHARP (Spacecraft Health Automated Reasoning Prototype) and the Voyager Neptune encounter
The development and application of the Spacecraft Health Automated Reasoning Prototype (SHARP) for the operations of the telecommunications systems and link analysis functions in Voyager mission operations are presented. An overview is provided of the design and functional description of the SHARP system as it was applied to Voyager. Some of the current problems and motivations for automation in real-time mission operations are discussed, as are the specific solutions that SHARP provides. The application of SHARP to Voyager telecommunications had the goal of being a proof-of-capability demonstration of artificial intelligence as applied to the problem of real-time monitoring functions in planetary mission operations. AS part of achieving this central goal, the SHARP application effort was also required to address the issue of the design of an appropriate software system architecture for a ground-based, highly automated spacecraft monitoring system for mission operations, including methods for: (1) embedding a knowledge-based expert system for fault detection, isolation, and recovery within this architecture; (2) acquiring, managing, and fusing the multiple sources of information used by operations personnel; and (3) providing information-rich displays to human operators who need to exercise the capabilities of the automated system. In this regard, SHARP has provided an excellent example of how advanced artificial intelligence techniques can be smoothly integrated with a variety of conventionally programmed software modules, as well as guidance and solutions for many questions about automation in mission operations
Even Between-Lap Pacing Despite High Within-Lap Variation During Mountain Biking
Purpose: Given the paucity of research on pacing strategies during competitive events, this study examined
changes in dynamic high-resolution performance parameters to analyze pacing profiles during a multiple-lap
mountain-bike race over variable terrain. Methods: A global-positioning-system (GPS) unit (Garmin, Edge
305, USA) recorded velocity (m/s), distance (m), elevation (m), and heart rate at 1 Hz from 6 mountain-bike
riders (mean ± SD age = 27.2 ± 5.0 y, stature = 176.8 ± 8.1 cm, mass = 76.3 ± 11.7 kg, VO2max = 55.1 ± 6.0 mL
· kg–1 . min–1) competing in a multilap race. Lap-by-lap (interlap) pacing was analyzed using a 1-way ANOVA
for mean time and mean velocity. Velocity data were averaged every 100 m and plotted against race distance
and elevation to observe the presence of intralap variation. Results: There was no significant difference in lap times (P = .99) or lap velocity (P = .65) across the 5 laps. Within each lap, a high degree of oscillation in velocity was observed, which broadly reflected changes in terrain, but high-resolution data demonstrated additional
nonmonotonic variation not related to terrain. Conclusion: Participants adopted an even pace strategy across
the 5 laps despite rapid adjustments in velocity during each lap. While topographical and technical variations
of the course accounted for some of the variability in velocity, the additional rapid adjustments in velocity
may be associated with dynamic regulation of self-paced exercise
- …