1,125 research outputs found

    External Inversion, Internal Inversion, and Reflection Invariance

    Full text link
    Having in mind that physical systems have different levels of structure we develop the concept of external, internal and total improper Lorentz transformation (space inversion and time reversal). A particle obtained from the ordinary one by the application of internal space inversion or time reversal is generally a different particle. From this point of view the intrinsic parity of a nuclear particle (`elementary particle') is in fact the external intrinsic parity, if we take into account the internal structure of a particle. We show that non-conservation of the external parity does not necessarily imply non-invariance of nature under space inversion. The conventional theory of beta-decay can be corrected by including the internal degrees of freedom to become invariant under total space inversion, though not under the external one.Comment: 15 pages. An early proposal of "mirror matter", published in 1974. This is an exact copy of the published paper. I am posting it here because of the increasing interest in the "exact parity models" and its experimental consequence

    LOOKING INTO THE ENERGY LANDSCAPE OF MYOGLOBIN

    Get PDF
    Using the haem group of myoglobin as a probe in optical experiments makes it possible to study its conformational fluctuations in real time. Results of these experiments can be directly interpreted in terms of the structure of the potential energy surface of the protein. The current view is that proteins have rough energy landscapes comprising a large number of minima which represent conformational substates, and that these substates are hierarchically organized. Here, we show that the energy landscape is characterized by a number of discrete distributions of;barrier heights each representing a tier within a hierarchy of conformational substates. Furthermore, we provide evidence that the energy surface is self-similar and offer suggestions for a characterization of the protein fluctuations

    Structurally specific thermal fluctuations identify functional sites for DNA transcription

    Full text link
    We report results showing that thermally-induced openings of double stranded DNA coincide with the location of functionally relevant sites for transcription. Investigating both viral and bacterial DNA gene promoter segments, we found that the most probable opening occurs at the transcription start site. Minor openings appear to be related to other regulatory sites. Our results suggest that coherent thermal fluctuations play an important role in the initiation of transcription. Essential elements of the dynamics, in addition to sequence specificity, are nonlinearity and entropy, provided by local base-pair constraints

    Anomalous relaxation and self-organization in non-equilibrium processes

    Full text link
    We study thermal relaxation in ordered arrays of coupled nonlinear elements with external driving. We find, that our model exhibits dynamic self-organization manifested in a universal stretched-exponential form of relaxation. We identify two types of self-organization, cooperative and anti-cooperative, which lead to fast and slow relaxation, respectively. We give a qualitative explanation for the behavior of the stretched exponent in different parameter ranges. We emphasize that this is a system exhibiting stretched-exponential relaxation without explicit disorder or frustration.Comment: submitted to PR

    Hydrometeorological threshold conditions for debris flow initiation in Norway

    Get PDF
    Debris flows, triggered by extreme precipitation events and rapid snow melt, cause considerable damage to the Norwegian infrastructure every year. To define intensity-duration (ID) thresholds for debris flow initiation critical water supply conditions arising from intensive rainfall or snow melt were assessed on the basis of daily hydro-meteorological information for 502 documented debris flow events. Two threshold types were computed: one based on absolute ID relationships and one using ID relationships normalized by the local precipitation day normal (PDN). For each threshold type, minimum, medium and maximum threshold values were defined by fitting power law curves along the 10th, 50th and 90th percentiles of the data population. Depending on the duration of the event, the absolute threshold intensities needed for debris flow initiation vary between 15 and 107 mm day<sup>−1</sup>. Since the PDN changes locally, the normalized thresholds show spatial variations. Depending on location, duration and threshold level, the normalized threshold intensities vary between 6 and 250 mm day<sup>−1</sup>. The thresholds obtained were used for a frequency analysis of over-threshold events giving an estimation of the exceedance probability and thus potential for debris flow events in different parts of Norway. The absolute thresholds are most often exceeded along the west coast, while the normalized thresholds are most frequently exceeded on the west-facing slopes of the Norwegian mountain ranges. The minimum thresholds derived in this study are in the range of other thresholds obtained for regions with a climate comparable to Norway. Statistics reveal that the normalized threshold is more reliable than the absolute threshold as the former shows no spatial clustering of debris flows related to water supply events captured by the threshold

    Analytic models for mechanotransduction: gating a mechanosensitive channel

    Get PDF
    Analytic estimates for the forces and free energy generated by bilayer deformation reveal a compelling and intuitive model for MscL channel gating analogous to the nucleation of a second phase. We argue that the competition between hydrophobic mismatch and tension results in a surprisingly rich story which can provide both a quantitative comparison to measurements of opening tension for MscL when reconstituted in bilayers of different thickness and qualitative insights into the function of the MscL channel and other transmembrane proteins

    Model Independent Form Factors for Spin Independent Neutralino-Nucleon Scattering from Elastic Electron Scattering Data

    Get PDF
    Theoretical calculations of neutralino-nucleon interaction rates with various nuclei are of great interest to direct dark matter searches such as CDMS, EDELWEISS, ZEPLIN, and other experiments since they are used to establish upper bounds on the WIMP-proton cross section. These interaction rates and cross sections are generally computed with standard, one or two parameter model-dependent nuclear form factors, which may not exactly mirror the actual form factor for the particular nucleus in question. As is well known, elastic electron scattering can allow for very precise determinations of nuclear form factors and hence nuclear charge densities for spherical or near-spherical nuclei. We use charge densities derived from elastic electron scattering data to calculate model independent, analytic form factors for various target nuclei important in dark matter searches, such as Si, Ge, S, Ca and others. We have found that for nuclear recoils in the range of 1-100 keV significant differences in cross sections and rates exist when the model independent form factors are used: at 30 keV nuclear recoil the form factors squared differ by a factor of 1.06 for 28^{28}Si, 1.11 for 40^{40}Ca, 1.27 for 70^{70}Ge, and 1.92 for 129^{129}Xe. We show the effect of different form factors on the upper limit on the WIMP-proton cross section obtained with a hypothetical 70^{70}Ge detector during a 100 kg-day effective exposure. Helm form factors with various parameter choices differ at most by 10--20% from the best (Fourier Bessel) form factor, and can approach it to better than 1% if the parameters are chosen to mimic the actual nuclear density.Comment: 20 pages, 8 figure

    Heat exchange between two interacting nanoparticles beyond the fluctuation-dissipation regime

    Get PDF
    We show that the observed non-monotonic behavior of the thermal conductance between two nanoparticles when they are brought into contact is originated by an intricate phase space dynamics. Here it is assumed that this dynamics results from the thermally activated jumping through a rough energy landscape. A hierarchy of relaxation times plays the key role in the description of this complex phase space behaviour. Our theory enables us to analyze the heat transfer just before and at the moment of contact.Comment: 4 pages, 1 figure, approved for publication in Physical Review Letter
    corecore