106,475 research outputs found
Ultra High Energy Cosmic Rays: Strangelets? -- Extra dimensions, TeV-scale black holes and strange matter
The conjecture that ultra high energy cosmic rays (UHECRs) are actually
strangelets is discussed. Besides the reason that strangelets can do as cosmic
rays beyond the GZK-cutoff, another argument to support the conjecture is
addressed in this letter via the study of formation of TeV-scale microscopic
black holes when UHECRs bombarding bare strange stars. It is proposed that the
exotic quark surface of a bare strange star could be an effective
astro-laboratory in the investigations of the extra dimensions and of the
detection of ultra-high energy neutrino fluxes. The flux of neutrinos (and
other point-like particles) with energy >2.3 x 10^{20} eV could be expected to
be smaller than 10^{-26} cm^{-2}$ s^{-1} if there are two extra spatial
dimensions.Comment: accepted by Chin. Phys. Lett., or at
http://vega.bac.pku.edu.cn/~rxxu/publications/index_P.ht
Can the age discrepancies of neutron stars be circumvented by an accretion-assisted torque?
It is found that 1E 1207.4-5209 could be a low-mass bare strange star if its
small radius or low altitude cyclotron formation can be identified. The age
problems of five sources could be solved by a fossil-disk-assisted torque. The
magnetic dipole radiation dominates the evolution of PSR B1757-24 at present,
and the others are in propeller (or tracking) phases.Comment: ApJL accepted, or at
http://vega.bac.pku.edu.cn/~rxxu/publications/index_P.ht
Quantum entangled ground states of two spinor Bose-Einstein condensates
We revisit in detail the non-mean-field ground-state phase diagram for a
binary mixture of spin-1 Bose-Einstein condensates including quantum
fluctuations. The non-commuting terms in the spin-dependent Hamiltonian under
single spatial mode approximation make it difficult to obtain exact
eigenstates. Utilizing the spin z-component conservation and the total spin
angular momentum conservation, we numerically derive the information of the
building blocks and evaluate von Neumann entropy to quantify the ground states.
The mean-field phase boundaries are found to remain largely intact, yet the
ground states show fragmented and entangled behaviors within large parameter
spaces of interspecies spin-exchange and singlet-pairing interactions.Comment: 7 pages, 5 figure
Isovector channel of quark-meson-coupling model and its effect on symmetry energy
The non-relativistic approximation of the quark-meson-coupling model has been
discussed and compared with the Skyrme-Hartree-Fock model which includes spin
exchanges. Calculations show that the spin-exchange interaction has important
effect on the descriptions of finite nuclei and nuclear matter through the Fock
exchange. Also in the quark-meson-coupling model, it is the Fock exchange that
leads to a nonlinear density-dependent isovector channel and changes the
density-dependent behavior of the symmetry energy.Comment: 20 pages, 9 figures and 1 table, accepted for publication in Nuclear
Physics
Searching for high- isomers in the proton-rich mass region
Configuration-constrained potential-energy-surface calculations have been
performed to investigate the isomerism in the proton-rich mass
region. An abundance of high- states are predicted. These high- states
arise from two and four-quasi-particle excitations, with and
, respectively. Their excitation energies are comparatively
low, making them good candidates for long-lived isomers. Since most nuclei
under studies are prolate spheroids in their ground states, the oblate shapes
of the predicted high- states may indicate a combination of isomerism
and shape isomerism
- …