38,701 research outputs found
Competition between Phase Separation and Spin Density Wave or Charge Density Wave Order: Role of Long-Range Interactions
Recent studies of pairing and charge order in materials such as FeSe,
SrTiO, and 2H-NbSe have suggested that momentum dependence of the
electron-phonon coupling plays an important role in their properties. Initial
attempts to study Hamiltonians which either do not include or else truncate the
range of Coulomb repulsion have noted that the resulting spatial non-locality
of the electron-phonon interaction leads to a dominant tendency to phase
separation. Here we present Quantum Monte Carlo results for such models in
which we incorporate both on-site and intersite electron-electron interactions.
We show that these can stabilize phases in which the density is homogeneous and
determine the associated phase boundaries. As a consequence, the physics of
momentum dependent electron-phonon coupling can be determined outside of the
trivial phase separated regime.Comment: 9 pages, 7 figure
Growth of single-crystal columns of CoSi2 embedded in epitaxial Si on Si(111) by molecular beam epitaxy
The codeposition of Si and Co on a heated Si(111) substrate is found to result in epitaxial columns of CoSi2 if the Si:Co ratio is greater than approximately 3:1. These columns are surrounded by a Si matrix which shows bulk-like crystalline quality based on transmission electron microscopy and ion channeling. This phenomenon has been studied as functions of substrate temperature and Si:Co ratio. Samples with columns ranging in average diameter from approximately 25 to 130 nm have been produced
Tunable magnetization damping in transition metal ternary alloys
We show that magnetization damping in Permalloy, Ni80Fe20 (``Py''), can be
enhanced sufficiently to reduce post-switching magnetization precession to an
acceptable level by alloying with the transition metal osmium (Os). The damping
increases monotonically upon raising the Os-concentration in Py, at least up to
9% of Os. Other effects of alloying with Os are suppression of magnetization
and enhancement of in-plane anisotropy. Magnetization damping also increases
significantly upon alloying with the five other transition metals included in
this study (4d-elements: Nb, Ru, Rh; 5d-elements: Ta, Pt) but never as strongly
as with Os.Comment: 4 pages, submitted to Appl. Phys. Let
Realization of Artificial Ice Systems for Magnetic Vortices in a Superconducting MoGe Thin-film with Patterned Nanostructures
We report an anomalous matching effect in MoGe thin films containing pairs of
circular holes arranged in such a way that four of those pairs meet at each
vertex point of a square lattice. A remarkably pronounced fractional matching
was observed in the magnetic field dependences of both the resistance and the
critical current. At the half matching field the critical current can be even
higher than that at zero field. This has never been observed before for
vortices in superconductors with pinning arrays. Numerical simulations within
the nonlinear Ginzburg-Landau theory reveal a square vortex ice configuration
in the ground state at the half matching field and demonstrate similar
characteristic features in the field dependence of the critical current,
confirming the experimental realization of an artificial ice system for
vortices for the first time.Comment: To appear in Phys. Rev. Let
Direct Measurement of the Photon Statistics of a Triggered Single Photon Source
We studied intensity fluctuations of a single photon source relying on the
pulsed excitation of the fluorescence of a single molecule at room temperature.
We directly measured the Mandel parameter Q(T) over 4 orders of magnitude of
observation timescale T, by recording every photocount. On timescale of a few
excitation periods, subpoissonian statistics is clearly observed and the
probablility of two-photons events is 10 times smaller than Poissonian pulses.
On longer times, blinking in the fluorescence, due to the molecular triplet
state, produces an excess of noise.Comment: 4 pages, 3 figures, 1 table submitted to Physical Review Letter
Fabrication of magnetic atom chips based on FePt
We describe the design and fabrication of novel all-magnetic atom chips for
use in ultracold atom trapping. The considerations leading to the choice of
nanocrystalline exchange coupled FePt as best material are discussed. Using
stray field calculations, we designed patterns that function as magnetic atom
traps. These patterns were realized by spark erosion of FePt foil and e-beam
lithography of FePt film. A mirror magneto-optical trap (MMOT) was obtained
using the stray field of the foil chip.Comment: 5 pages, 5 figure
Recommended from our members
DGR mutagenic transposition occurs via hypermutagenic reverse transcription primed by nicked template RNA.
Diversity-generating retroelements (DGRs) are molecular evolution machines that facilitate microbial adaptation to environmental changes. Hypervariation occurs via a mutagenic retrotransposition process from a template repeat (TR) to a variable repeat (VR) that results in adenine-to-random nucleotide conversions. Here we show that reverse transcription of the Bordetella phage DGR is primed by an adenine residue in TR RNA and is dependent on the DGR-encoded reverse transcriptase (bRT) and accessory variability determinant (Avd ), but is VR-independent. We also find that the catalytic center of bRT plays an essential role in site-specific cleavage of TR RNA for cDNA priming. Adenine-specific mutagenesis occurs during reverse transcription and does not involve dUTP incorporation, indicating it results from bRT-catalyzed misincorporation of standard deoxyribonucleotides. In vivo assays show that this hybrid RNA-cDNA molecule is required for mutagenic transposition, revealing a unique mechanism of DNA hypervariation for microbial adaptation
Kernelization and Parameterized Algorithms for 3-Path Vertex Cover
A 3-path vertex cover in a graph is a vertex subset such that every path
of three vertices contains at least one vertex from . The parameterized
3-path vertex cover problem asks whether a graph has a 3-path vertex cover of
size at most . In this paper, we give a kernel of vertices and an
-time and polynomial-space algorithm for this problem, both new
results improve previous known bounds.Comment: in TAMC 2016, LNCS 9796, 201
- …