3,291 research outputs found

    Pressure effects in PrT2B2C (T = Co, Ni, Pt): Applied and chemical pressure

    Full text link
    High-pressure electrical resistivity, r(T), measurements on intermetallic Pr(Co, Ni, Pt)2B2C compounds were performed down to 2K. At room pressure the r(T) in a-b direction curves for the non superconducting Pr(Co, Ni)2B2C compounds exhibit magnetic correlations at about 10 and 4 K, respectively. At low temperatures, PrCo2B2C shows a large spin-dependent electron scattering in comparison to PrNi2B2C. Under applied pressure the magnetic scattering tends to be suppressed more effectively in PrCo2B2C than in PrNi2 B2C. The low temperature behavior of r(T,P) for PrNi2B2C and PrCo2B2C suggests a spin fluctuations mechanism. In the other hand PrPt2B2C compound shows superconductivity at about 6 K and under pressure its superconducting transition temperature tends to be degraded at a rate dTc/dP = -0.34 K/GPa, as expected in compounds with transition metals. The experimental results in Co, Ni and Pt based compounds are analyzed from the point of view of the external and chemical internal pressure effects

    Dynamic Scaling of Non-Euclidean Interfaces

    Full text link
    The dynamic scaling of curved interfaces presents features that are strikingly different from those of the planar ones. Spherical surfaces above one dimension are flat because the noise is irrelevant in such cases. Kinetic roughening is thus a one-dimensional phenomenon characterized by a marginal logarithmic amplitude of the fluctuations. Models characterized by a planar dynamical exponent z>1z>1, which include the most common stochastic growth equations, suffer a loss of correlation along the interface, and their dynamics reduce to that of the radial random deposition model in the long time limit. The consequences in several applications are discussed, and we conclude that it is necessary to reexamine some experimental results in which standard scaling analysis was applied
    • …
    corecore