15 research outputs found

    Genetic and mutational heterogeneity of autosomal recessive chronic granulomatous disease in Tunisia

    No full text
    International audienceNADPH oxidase, a multi-subunit protein consisting of cytosolic components and the membrane-bound heterodimer, plays an instrumental role in host defence mechanisms of phagocytes. Genetic deficiency of the enzymatic complex results in an inherited disorder, chronic granulomatous disease (CGD), which is characterized by an impaired phagocyte microbicidal activity. X-Linked (XL) CGD results from a mutation in the CYBB gene encoding the gp91phox subunit, while autosomal recessive (AR) CGD is associated with mutations in one of the NCF1, NCF2 and CYBA genes that encode the p47phox, p67phox and p22phox subunits, respectively. In the study reported here, we investigated genetic defects underlying CGD in 15 Tunisian patients from 14 unrelated families. Haplotype analyses and homozygosity mapping with microsatellite markers around known CGD genes assigned the genetic defect to NCF1 in four patients, to NCF2 in four patients and to CYBA in two patients. However, one family with two CGD patients seemed not to link the genetic defect to any known AR-CGD genes. Mutation screening identified two novel mutations in NCF2 and CYBA in addition to the recurrent mutation, Delta GT, in NCF1 and a splice site mutation previously reported in a North African patient. Our results revealed the genetic and mutational heterogeneity of the AR recessive form of CGD in Tunisia

    Clinical and genetic investigation of a large Tunisian family with complete achromatopsia: identification of a new nonsense mutation in GNAT2 gene.

    No full text
    Complete achromatopsia is a rare autosomal recessive disease associated with CNGA3, CNGB3, GNAT2 and PDE6C mutations. This retinal disorder is characterized by complete loss of color discrimination due to the absence or alteration of the cones function. The purpose of the present study was the clinical and the genetic characterization of achromatopsia in a large consanguineous Tunisian family. Ophthalmic evaluation included a full clinical examination, color vision testing and electroretinography. Linkage analysis using microsatellite markers flanking CNGA3, CNGB3, GNAT2 and PDE6C genes was performed. Mutations were screened by direct sequencing. A total of 12 individuals were diagnosed with congenital complete achromatopsia. They are members of six nuclear consanguineous families belonging to the same large consanguineous family. Linkage analysis revealed linkage to GNAT2. Mutational screening of GNAT2 revealed three intronic variations c.119-69G>C, c.161+66A>T and c.875-31G>C that co-segregated with a novel mutation p.R313X. An identical GNAT2 haplotype segregating with this mutation was identified, indicating a founder mutation. All patients were homozygous for the p.R313X mutation. This is the first report of the clinical and genetic investigation of complete achromatopsia in North Africa and the largest family with recessive achromatopsia involving GNAT2; thus, providing a unique opportunity for genotype-phenotype correlation for this extremely rare condition
    corecore