18,001 research outputs found

    Direct calculation of the spin stiffness on square, triangular and cubic lattices using the coupled cluster method

    Full text link
    We present a method for the direct calculation of the spin stiffness by means of the coupled cluster method. For the spin-half Heisenberg antiferromagnet on the square, the triangular and the cubic lattices we calculate the stiffness in high orders of approximation. For the square and the cubic lattices our results are in very good agreement with the best results available in the literature. For the triangular lattice our result is more precise than any other result obtained so far by other approximate method.Comment: 5 pages, 2 figure

    Nonlinear projective filtering in a data stream

    Full text link
    We introduce a modified algorithm to perform nonlinear filtering of a time series by locally linear phase space projections. Unlike previous implementations, the algorithm can be used not only for a posteriori processing but includes the possibility to perform real time filtering in a data stream. The data base that represents the phase space structure generated by the data is updated dynamically. This also allows filtering of non-stationary signals and dynamic parameter adjustment. We discuss exemplary applications, including the real time extraction of the fetal electrocardiogram from abdominal recordings.Comment: 8 page

    Coupled Cluster Treatment of the Shastry-Sutherland Antiferromagnet

    Full text link
    We consider the zero-temperature properties of the spin-half two-dimensional Shastry-Sutherland antiferromagnet by using a high-order coupled cluster method (CCM) treatment. We find that this model demonstrates various groundstate phases (N\'{e}el, magnetically disordered, orthogonal dimer), and we make predictions for the positions of the phase transition points. In particular, we find that orthogonal-dimer state becomes the groundstate at J2d/J1∼1.477{J}^{d}_2/J_1 \sim 1.477. For the critical point J2c/J1J_2^{c}/J_1 where the semi-classical N\'eel order disappears we obtain a significantly lower value than J2d/J1J_2^{d}/J_1, namely, J2c/J1{J}^{c}_2/J_1 in the range [1.14,1.39][1.14, 1.39]. We therefore conclude that an intermediate phase exists between the \Neel and the dimer phases. An analysis of the energy of a competing spiral phase yields clear evidence that the spiral phase does not become the groundstate for any value of J2J_2. The intermediate phase is therefore magnetically disordered but may exhibit plaquette or columnar dimer ordering.Comment: 6 pages, 5 figure

    The sawtooth chain: From Heisenberg spins to Hubbard electrons

    Full text link
    We report on recent studies of the spin-half Heisenberg and the Hubbard model on the sawtooth chain. For both models we construct a class of exact eigenstates which are localized due to the frustrating geometry of the lattice for a certain relation of the exchange (hopping) integrals. Although these eigenstates differ in details for the two models because of the different statistics, they share some characteristic features. The localized eigenstates are highly degenerate and become ground states in high magnetic fields (Heisenberg model) or at certain electron fillings (Hubbard model), respectively. They may dominate the low-temperature thermodynamics and lead to an extra low-temperature maximum in the specific heat. The ground-state degeneracy can be calculated exactly by a mapping of the manifold of localized ground states onto a classical hard-dimer problem, and explicit expressions for thermodynamic quantities can be derived which are valid at low temperatures near the saturation field for the Heisenberg model or around a certain value of the chemical potential for the Hubbard model, respectively.Comment: 16 pages, 6 figure, the paper is based on an invited talk on the XXXI International Workshop on Condensed Matter Theories, Bangkok, Dec 2007; notation of x-axis in Fig.6 corrected, references update

    Improved bounds for the crossing numbers of K_m,n and K_n

    Full text link
    It has been long--conjectured that the crossing number cr(K_m,n) of the complete bipartite graph K_m,n equals the Zarankiewicz Number Z(m,n):= floor((m-1)/2) floor(m/2) floor((n-1)/2) floor(n/2). Another long--standing conjecture states that the crossing number cr(K_n) of the complete graph K_n equals Z(n):= floor(n/2) floor((n-1)/2) floor((n-2)/2) floor((n-3)/2)/4. In this paper we show the following improved bounds on the asymptotic ratios of these crossing numbers and their conjectured values: (i) for each fixed m >= 9, lim_{n->infty} cr(K_m,n)/Z(m,n) >= 0.83m/(m-1); (ii) lim_{n->infty} cr(K_n,n)/Z(n,n) >= 0.83; and (iii) lim_{n->infty} cr(K_n)/Z(n) >= 0.83. The previous best known lower bounds were 0.8m/(m-1), 0.8, and 0.8, respectively. These improved bounds are obtained as a consequence of the new bound cr(K_{7,n}) >= 2.1796n^2 - 4.5n. To obtain this improved lower bound for cr(K_{7,n}), we use some elementary topological facts on drawings of K_{2,7} to set up a quadratic program on 6! variables whose minimum p satisfies cr(K_{7,n}) >= (p/2)n^2 - 4.5n, and then use state--of--the--art quadratic optimization techniques combined with a bit of invariant theory of permutation groups to show that p >= 4.3593.Comment: LaTeX, 18 pages, 2 figure

    Effect of anisotropy on the ground-state magnetic ordering of the spin-one quantum J1XXZJ_{1}^{XXZ}--J2XXZJ_{2}^{XXZ} model on the square lattice

    Full text link
    We study the zero-temperature phase diagram of the J1XXZJ_{1}^{XXZ}--J2XXZJ_{2}^{XXZ} Heisenberg model for spin-1 particles on an infinite square lattice interacting via nearest-neighbour (J1≡1J_1 \equiv 1) and next-nearest-neighbour (J2>0J_2 > 0) bonds. Both bonds have the same XXZXXZ-type anisotropy in spin space. The effects on the quasiclassical N\'{e}el-ordered and collinear stripe-ordered states of varying the anisotropy parameter Δ\Delta is investigated using the coupled cluster method carried out to high orders. By contrast with the spin-1/2 case studied previously, we predict no intermediate disordered phase between the N\'{e}el and collinear stripe phases, for any value of the frustration J2/J1J_2/J_1, for either the zz-aligned (Δ>1\Delta > 1) or xyxy-planar-aligned (0≤Δ<10 \leq \Delta < 1) states. The quantum phase transition is determined to be first-order for all values of J2/J1J_2/J_1 and Δ\Delta. The position of the phase boundary J2c(Δ)J_{2}^{c}(\Delta) is determined accurately. It is observed to deviate most from its classical position J2c=1/2J_2^c = {1/2} (for all values of Δ>0\Delta > 0) at the Heisenberg isotropic point (Δ=1\Delta = 1), where J2c(1)=0.55±0.01J_{2}^{c}(1) = 0.55 \pm 0.01. By contrast, at the XY isotropic point (Δ=0\Delta = 0), we find J2c(0)=0.50±0.01J_{2}^{c}(0) = 0.50 \pm 0.01. In the Ising limit (Δ→∞\Delta \to \infty) J2c→0.5J_2^c \to 0.5 as expected.Comment: 20 pages, 5 figure
    • …
    corecore