1,041 research outputs found

    Astronomical seeing and ground-layer turbulence in the Canadian High Arctic

    Full text link
    We report results of a two-year campaign of measurements, during arctic winter darkness, of optical turbulence in the atmospheric boundary-layer above the Polar Environment Atmospheric Laboratory in northern Ellesmere Island (latitude +80 deg N). The data reveal that the ground-layer turbulence in the Arctic is often quite weak, even at the comparatively-low 610 m altitude of this site. The median and 25th percentile ground-layer seeing, at a height of 20 m, are found to be 0.57 and 0.25 arcsec, respectively. When combined with a free-atmosphere component of 0.30 arcsec, the median and 25th percentile total seeing for this height is 0.68 and 0.42 arcsec respectively. The median total seeing from a height of 7 m is estimated to be 0.81 arcsec. These values are comparable to those found at the best high-altitude astronomical sites

    Impact of Sodium Layer variations on the performance of the E-ELT MCAO module

    Full text link
    Multi-Conjugate Adaptive Optics systems based on sodium Laser Guide Stars may exploit Natural Guide Stars to solve intrinsic limitations of artificial beacons (tip-tilt indetermination and anisoplanatism) and to mitigate the impact of the sodium layer structure and variability. The sodium layer may also have transverse structures leading to differential effects among Laser Guide Stars. Starting from the analysis of the input perturbations related to the Sodium Layer variability, modeled directly on measured sodium layer profiles, we analyze, through a simplified end-to-end simulation code, the impact of the low/medium orders induced on global performance of the European Extremely Large Telescope Multi-Conjugate Adaptive Optics module MAORY.Comment: 7 pages, 5 figures, SPIE conference Proceedin

    A New Ultra-dense Group of Obscured Emission-Line Galaxies

    Get PDF
    We present the discovery of an isolated compact group of galaxies that is extremely dense (median projected galaxy separation: 6.9 kpc), has a very low velocity dispersion (σ2D\sigma_{\rm 2D} = 67 km s1^{-1}), and where all observed members show emission lines and are morphologically disturbed. These properties, together with the lack of spirals and the presence of a prominent tidal tail make this group one of the most evolved compact groups.Comment: 15 pages,LaTeX, 2figures. A Postscript figure with spectra is available at ftp://astro.uibk.ac.at/pub/weinberger/ . Accepted for publication in ApJ Letter

    First Assessment of Mountains on Northwestern Ellesmere Island, Nunavut, as Potential Astronomical Observing Sites

    Full text link
    Ellesmere Island, at the most northerly tip of Canada, possesses the highest mountain peaks within 10 degrees of the pole. The highest is 2616 m, with many summits over 1000 m, high enough to place them above a stable low-elevation thermal inversion that persists through winter darkness. Our group has studied four mountains along the northwestern coast which have the additional benefit of smooth onshore airflow from the ice-locked Arctic Ocean. We deployed small robotic site testing stations at three sites, the highest of which is over 1600 m and within 8 degrees of the pole. Basic weather and sky clarity data for over three years beginning in 2006 are presented here, and compared with available nearby sea-level data and one manned mid-elevation site. Our results point to coastal mountain sites experiencing good weather: low median wind speed, high clear-sky fraction and the expectation of excellent seeing. Some practical aspects of access to these remote locations and operation and maintenance of equipment there are also discussed.Comment: 21 pages, 2 tables, 15 figures; accepted for publication in PAS

    Astronomical Sky Quality Near Eureka, in the Canadian High Arctic

    Full text link
    Nighttime visible-light sky brightness and transparency are reported for the Polar Environment Research Laboratory (PEARL), located on a 610-m high ridge near the Eureka research station, on Ellesmere Island, Canada. Photometry of Polaris obtained in V band with the PEARL All Sky Imager (PASI) over two winters is supported by standard meteorological measurements and visual estimates of sky conditions from sea level. These data show that during the period of the study, October through March of 2008/09 and 2009/10, the sky near zenith had a mean surface brightness of 19.7 mag/square-arcsec when the sun was more than 12 deg below the horizon, reaching 20.7 mag/square-arcsec during astronomical darkness with no moon. Skies were without thick cloud and potentially usable for astronomy 86% of the time (extinction <2 mag). Up to 68% of the time was spectroscopic (<0.5 mag), attenuated by ice crystals, or clear with stable atmospheric transparency. Those conditions can persist for over 100 hours at a time. Further analysis suggests the sky was entirely free of ice crystals (truly photometric) 48+/-3% of the time at PEARL in winter, and that a higher elevation location nearby may be better.Comment: 14 pages, 1 table, 11 figures; accepted for publication in PAS

    Fertility and survival of Swedish Red and White × Holstein crossbred cows and purebred Holstein cows

    Get PDF
    Swedish Red and White × Holstein (S×H) cows were compared with pure Holstein (HOL) cows for fertility and survival traits in 2 commercial dairy farms in central-southern Córdoba province, Argentina, over 6 years (2008–2013). The following traits were evaluated: first service conception rate (FSCR), overall conception rate (CR), number of services per conception (SC), days open (DO), mortality rate, culling rate, survival to subsequent calvings, and length of productive life (LPL). The data set consisted of 506 lactations from 240 S×H crossbred cows and 1,331 lactations from 576 HOL cows. The FSCR and CR were analyzed using logistic regression, DO and LPL were analyzed using a Cox's proportional hazards regression model, and differences of proportions were calculated for mortality rate, culling rate, and survival to subsequent calvings. The S×H cows were superior to HOL cows in overall lactations for all the fertility traits (+10.5% FSCR, +7.7% CR, −0.5 SC, and 35 fewer DO). During the first lactation, S×H cows were superior to HOL cows for all fertility traits (+12.8% FSCR, +8.0% CR, −0.4 SC, and 34 fewer DO). In the second lactation, S×H cows exhibited lower SC (−0.5) and 21 fewer DO than HOL cows. In the third or greater lactations, S×H cows showed higher FSCR (+11.0%) and CR (+12.2%), lower SC (−0.8), and 44 fewer DO than pure HOL cows. In addition, S×H cows had a lower mortality rate (−4.7%) and a lower culling rate (−13.7%) than HOL cows. Due to the higher fertility and lower mortality and culling rates, the S×H cows had higher survival to the second (+9.2%), third (+16.9%), and fourth (+18.7%) calvings than HOL cows. Because of these results, S×H cows had longer LPL (+10.3 mo) than HOL cows. These results indicate that S×H cows had higher fertility and survival than HOL cows on commercial dairy farms in Argentina.Fil: Pipino, D. F.. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria. Departamento de Producción Animal; ArgentinaFil: Piccardi, Mónica Belén. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigaciones Agropecuarias. Unidad de Fitopatología y Modelización Agrícola - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Unidad de Fitopatología y Modelización Agrícola; ArgentinaFil: Lopez Villalobos, Nicolas. Massey University; Nueva ZelandaFil: Hickson, R. E.. Massey University; Nueva ZelandaFil: Vazquez, Maria Isabel. Universidad Nacional de Río Cuarto. Facultad de Agronomía y Veterinaria. Departamento de Producción Animal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentin

    The Properties of Poor Groups of Galaxies: III. The Galaxy Luminosity Function

    Full text link
    We obtain R-band photometry for galaxies in six nearby poor groups for which we have spectroscopic data, including 328 new galaxy velocities. For the five groups with luminous X-ray halos, the composite group galaxy luminosity function (GLF) is fit adequately by a Schechter function with Mstar = -21.6 +/- 0.4 + 5log h and alpha = -1.3 +/- 0.1. We also find that (1) the ratio of dwarfs to giants is significantly larger for the five groups with luminous X-ray halos than for the one marginally X-ray detected group, (2) the composite GLF for the luminous X-ray groups is consistent in shape with that for rich clusters, (3) the composite group GLF rises more steeply at the faint end than that of the field, (4) the shape difference between the field and composite group GLF's results mostly from the population of non-emission line galaxies, whose dwarf-to-giant ratio is larger in the denser group environment than in the field, and (5) the non-emission line dwarfs are more concentrated about the group center than the non-emission line giants. This last result indicates that the dwarfs and giants occupy different orbits (i.e., have not mixed completely) and suggests that the populations formed at a different times. Our results show that the shape of the GLF varies with environment and that this variation is due primarily to an increase in the dwarf-to-giant ratio of quiescent galaxies in higher density regions, at least up to the densities characteristic of X-ray luminous poor groups. This behavior suggests that, in some environments, dwarfs are more biased than giants with respect to dark matter. This trend conflicts with the prediction of standard biased galaxy formation models. (Abridged)Comment: 36 pages, AASLaTeX with 8 figures. Table 1 also available at http://atropos.as.arizona.edu/aiz/papers/all_grp_lf_ascii.dat.final . To appear in Ap

    A cryogenic liquid-mirror telescope on the moon to study the early universe

    Full text link
    We have studied the feasibility and scientific potential of zenith observing liquid mirror telescopes having 20 to 100 m diameters located on the moon. They would carry out deep infrared surveys to study the distant universe and follow up discoveries made with the 6 m James Webb Space Telescope (JWST), with more detailed images and spectroscopic studies. They could detect objects 100 times fainter than JWST, observing the first, high-red shift stars in the early universe and their assembly into galaxies. We explored the scientific opportunities, key technologies and optimum location of such telescopes. We have demonstrated critical technologies. For example, the primary mirror would necessitate a high-reflectivity liquid that does not evaporate in the lunar vacuum and remains liquid at less than 100K: We have made a crucial demonstration by successfully coating an ionic liquid that has negligible vapor pressure. We also successfully experimented with a liquid mirror spinning on a superconducting bearing, as will be needed for the cryogenic, vacuum environment of the telescope. We have investigated issues related to lunar locations, concluding that locations within a few km of a pole are ideal for deep sky cover and long integration times. We have located ridges and crater rims within 0.5 degrees of the North Pole that are illuminated for at least some sun angles during lunar winter, providing power and temperature control. We also have identified potential problems, like lunar dust. Issues raised by our preliminary study demand additional in-depth analyses. These issues must be fully examined as part of a scientific debate we hope to start with the present article.Comment: 35 pages, 11 figures. To appear in Astrophysical Journal June 20 200
    corecore