733 research outputs found
Analytical ground state for the three-band Hubbard model
For the calculation of charge excitations as those observed in, e.g.,
photo-emission spectroscopy or in electron-energy loss spectroscopy, a correct
description of ground-state charge properties is essential. In strongly
correlated systems like the undoped cuprates this is a highly non-trivial
problem. In this paper we derive a non-perturbative analytical approximation
for the ground state of the three-band Hubbard model on an infinite, half
filled CuO_2 plane. By comparison with Projector Quantum Monte Carlo
calculations it is shown that the resulting expressions correctly describe the
charge properties of the ground state. Relations to other approaches are
discussed. The analytical ground state preserves size consistency and can be
generalized for other geometries, while still being both easy to interpret and
to evaluate.Comment: REVTeX, 8 pages, 6 figures, to appear in Phys. Rev.
Combining 10Be surface exposure and OSL dating to reconstruct Holocene lake-level fluctuations: a case study at Tangra Yumco (southern Tibet)
Abstract HKT-ISTP 2013
B
Phase Transition in the Three-Dimensional Ising Spin Glass
We have studied the three-dimensional Ising spin glass with a
distribution by Monte Carlo simulations. Using larger sizes and much better
statistics than in earlier work, a finite size scaling analysis shows quite
strong evidence for a finite transition temperature, , with ordering below
. Our estimate of the transition temperature is rather lower than in
earlier work, and the value of the correlation length exponent, , is
somewhat higher. Because there may be (unknown) corrections to finite size
scaling, we do not completely rule out the possibility that or that
is finite but with no order below . However, from our data, these
possibilities seem less likely.Comment: Postscript file compressed using uufiles. The postscript file is also
available by anonymous ftp at ftp://chopin.ucsc.edu/pub/sg3d.p
Kinetic Inductance of Josephson Junction Arrays: Dynamic and Equilibrium Calculations
We show analytically that the inverse kinetic inductance of an
overdamped junction array at low frequencies is proportional to the admittance
of an inhomogeneous equivalent impedance network. The bond in this
equivalent network has an inverse inductance
, where is the Josephson
coupling energy of the bond, is the ground-state phase
of the grain , and is the usual magnetic phase factor. We use this
theorem to calculate for square arrays as large as .
The calculated is in very good agreement with the low-temperature
limit of the helicity modulus calculated by conventional equilibrium
Monte Carlo techniques. However, the finite temperature structure of ,
as a function of magnetic field, is \underline{sharper} than the
zero-temperature , which shows surprisingly weak structure. In
triangular arrays, the equilibrium calculation of yields a series of
peaks at frustrations , where is an integer , consistent with experiment.Comment: 14 pages + 6 postscript figures, 3.0 REVTe
First-Order Vortex Lattice Melting and Magnetization of YBaCuO$_{7-\delta}
We present the first non-mean-field calculation of the magnetization
of YBaCuO both above and below the flux-lattice melting
temperature . The results are in good agreement with experiment as a
function of transverse applied field . The effects of fluctuations in both
order parameter and magnetic induction are included in the
Ginzburg-Landau free energy functional: fluctuates within the
lowest Landau level in each layer, while fluctuates uniformly according to
the appropriate Boltzmann factor. The second derivative is predicted to be negative throughout the vortex liquid state and
positive in the solid state. The discontinuities in entropy and magnetization
at melting are calculated to be per flux line per layer and
~emu~cm at a field of 50 kOe.Comment: 11 pages, 4 PostScript figures in one uuencoded fil
Metamagnetism in the 2D Hubbard Model with easy axis
Although the Hubbard model is widely investigated, there are surprisingly few
attempts to study the behavior of such a model in an external magnetic field.
Using the Projector Quantum Monte Carlo technique, we show that the Hubbard
model with an easy axis exhibits metamagnetic behavior if an external field is
turned on. For the case of intermediate correlations strength , we observe a
smooth transition from an antiferromagnetic regime to a paramagnetic phase.
While the staggered magnetization will decrease linearly up to a critical field
, uniform magnetization develops only for fields higher than .Comment: RevTeX 5 pages + 2 postscript figures (included), accepted for PRB
Rapid Communication
Stability of the vortex lattice in a rotating superfluid
We analyze the stability of the vortex lattice in a rotating superfluid
against thermal fluctuations associated with the long-wavelength Tkachenko
modes of the lattice. Inclusion of only the two-dimensional modes leads
formally to instability in infinite lattices; however, when the full
three-dimensional spectrum of modes is taken into account, the
thermally-induced lattice displacements are indeed finite.Comment: 16 page
Effect of disorder on the vortex-lattice melting transition
We use a three dimensional stacked triangular network of Josephson junctions
as a model for the study of vortex structure in the mixed state of high Tc
superconductors. We show that the addition of disorder destroys the first order
melting transition occurring for clean samples. The melting transition splits
in two different (continuous) transitions, ocurring at temperatures Ti and Tp
(>Ti). At Ti the perpendicular-to-field superconductivity is lost, and at Tp
the parallel-to-field superconductivity is lost. These results agree well with
recent experiments in YBaCuO.Comment: 4 pages + 2 figure
Magnetization Jump in a Model for Flux Lattice Melting at Low Magnetic Fields
Using a frustrated XY model on a lattice with open boundary conditions, we
numerically study the magnetization change near a flux lattice melting
transition at low fields. In both two and three dimensions, we find that the
melting transition is followed at a higher temperature by the onset of large
dissipation associated with the zero-field XY transition. It is characterized
by the proliferation of vortex-antivortex pairs (in 2D) or vortex loops (in
3D). At the upper transition, there is a sharp increase in magnetization, in
qualitative agreement with recent local Hall probe experiments.Comment: updated figures and texts. new movies available at
http://www.physics.ohio-state.edu:80/~ryu/jj.html. Accepted for publication
in Physical Review Letter
Charge-order transition in the extended Hubbard model on a two-leg ladder
We investigate the charge-order transition at zero temperature in a two-leg
Hubbard ladder with additional nearest-neighbor Coulomb repulsion V using the
Density Matrix Renormalization Group technique. We consider electron densities
between quarter and half filling. For quarter filling and U=8t, we find
evidence for a continuous phase transition between a homogeneous state at small
V and a broken-symmetry state with "checkerboard" [wavevector Q=(pi,pi)] charge
order at large V. This transition to a checkerboard charge-ordered state
remains present at all larger fillings, but becomes discontinuous at
sufficiently large filling. We discuss the influence of U/t on the transition
and estimate the position of the tricritical points.Comment: 4 pages, 5 figs, minor changes, accepted for publication in PRB R
- …