3,745 research outputs found

    Decoherence of Histories and Hydrodynamic Equations for a Linear Oscillator Chain

    Full text link
    We investigate the decoherence of histories of local densities for linear oscillators models. It is shown that histories of local number, momentum and energy density are approximately decoherent, when coarse-grained over sufficiently large volumes. Decoherence arises directly from the proximity of these variables to exactly conserved quantities (which are exactly decoherent), and not from environmentally-induced decoherence. We discuss the approach to local equilibrium and the subsequent emergence of hydrodynamic equations for the local densities.Comment: 37 pages, RevTe

    Approximate Decoherence of Histories and 't Hooft's Deterministic Quantum Theory

    Get PDF
    This paper explores the possibility that an exactly decoherent set of histories may be constructed from an approximately decoherent set by small distortions of the operators characterizing the histories. In particular, for the case of histories of positions and momenta, this is achieved by doubling the set of operators and then finding, amongst this enlarged set, new position and momentum operators which commute, so decohere exactly, and which are ``close'' to the original operators. The enlarged, exactly decoherent, theory has the same classical dynamics as the original one, and coincides with the so-called deterministic quantum theories of the type recently studied by 't Hooft. These results suggest that the comparison of standard and deterministic quantum theories may provide an alternative method of characterizing emergent classicality. A side-product is the surprising result that histories of momenta in the quantum Brownian motion model (for the free particle in the high-temperature limit) are exactly decoherent.Comment: 41 pages, plain Te

    The exact cosmological solution to the dynamical equations for the Bianchi IX model

    Get PDF
    Quantum geometrodynamics in extended phase space describes phenomenologically the integrated system ``a physical object + observation means (a gravitational vacuum condensate)''. The central place in this version of QGD belongs to the Schrodinger equation for a wave function of the Universe. An exact solution to the ``conditionally-classical'' set of equations in extended phase space for the Bianchi-IX model and the appropriate solution to the Schrodinger equation are considered. The physical adequacy of the obtained solutions to existing concepts about possible cosmological scenarios is demonstrated. The gravitational vacuum condensate is shown to be a cosmological evolution factor.Comment: LaTeX, 14 pages, to be published in Int. J. Mod. Phys.

    Representations of Spacetime Alternatives and Their Classical Limits

    Full text link
    Different quantum mechanical operators can correspond to the same classical quantity. Hermitian operators differing only by operator ordering of the canonical coordinates and momenta at one moment of time are the most familiar example. Classical spacetime alternatives that extend over time can also be represented by different quantum operators. For example, operators representing a particular value of the time average of a dynamical variable can be constructed in two ways: First, as the projection onto the value of the time averaged Heisenberg picture operator for the dynamical variable. Second, as the class operator defined by a sum over those histories of the dynamical variable that have the specified time-averaged value. We show both by explicit example and general argument that the predictions of these different representations agree in the classical limit and that sets of histories represented by them decohere in that limit.Comment: 11 pages, 10 figures, Revtex4, minor correction

    Decoherence of Hydrodynamic Histories: A Simple Spin Model

    Get PDF
    In the context of the decoherent histories approach to the quantum mechanics of closed systems, Gell-Mann and Hartle have argued that the variables typically characterizing the quasiclassical domain of a large complex system are the integrals over small volumes of locally conserved densities -- hydrodynamic variables. The aim of this paper is to exhibit some simple models in which approximate decoherence arises as a result of local conservation. We derive a formula which shows the explicit connection between local conservation and approximate decoherence. We then consider a class of models consisting of a large number of weakly interacting components, in which the projections onto local densities may be decomposed into projections onto one of two alternatives of the individual components. The main example we consider is a one-dimensional chain of locally coupled spins, and the projections are onto the total spin in a subsection of the chain. We compute the decoherence functional for histories of local densities, in the limit when the number of components is very large. We find that decoherence requires two things: the smearing volumes must be sufficiently large to ensure approximate conservation, and the local densities must be partitioned into sufficiently large ranges to ensure protection against quantum fluctuations.Comment: Standard TeX, 36 pages + 3 figures (postscript) Revised abstract and introduction. To appear in Physical Review

    The interpretation of the solutions of the Wheeler De Witt equation

    Full text link
    We extract transition amplitudes among matter constituents of the universe from the solutions of the Wheeler De Witt equation. The physical interpretation of these solutions is then reached by an analysis of the properties of the transition amplitudes. The interpretation so obtained is based on the current carried by these solutions and confirms ideas put forward by Vilenkin.Comment: 11 pages, latex, no figure

    Sum-over-histories origin of the composition laws of relativistic quantum mechanics and quantum cosmology

    Full text link
    The scope of the paper has been broadened to include a more complete discussion of the following topics: The derivation of composition laws in quantum cosmology. The connection between the existence of a composition law in the sum over histories approach to relativistic quantum mechanics and quantum cosmology, and the existence of a canonical formulation.Comment: 36 page

    Spacetime Coarse Grainings in the Decoherent Histories Approach to Quantum Theory

    Get PDF
    We investigate the possibility of assigning consistent probabilities to sets of histories characterized by whether they enter a particular subspace of the Hilbert space of a closed system during a given time interval. In particular we investigate the case that this subspace is a region of the configuration space. This corresponds to a particular class of coarse grainings of spacetime regions. We consider the arrival time problem and the problem of time in reparametrization invariant theories as for example in canonical quantum gravity. Decoherence conditions and probabilities for those application are derived. The resulting decoherence condition does not depend on the explicit form of the restricted propagator that was problematic for generalizations such as application in quantum cosmology. Closely related is the problem of tunnelling time as well as the quantum Zeno effect. Some interpretational comments conclude, and we discuss the applicability of this formalism to deal with the arrival time problem.Comment: 23 pages, Few changes and added references in v

    Quantum-Mechanical Histories and the Uncertainty Principle. II. Fluctuations About Classical Predictability

    Full text link
    This paper is concerned with two questions in the decoherent histories approach to quantum mechanics: the emergence of approximate classical predictability, and the fluctuations about it necessitated by the uncertainty principle. We consider histories characterized by position samplings at nn moments of time. We use this to construct a probability distribution on the value of (discrete approximations to) the field equations, F=mx¨+V(x)F = m \ddot x + V'(x) , at n2n-2 times. We find that it is peaked around F=0F=0; thus classical correlations are exhibited. We show that the width of the peak ΔF \Delta F is largely independent of the initial state and the uncertainty principle takes the form 2σ2 (ΔF)22/t22 \sigma^2 \ (\Delta F)^2 \ge { \hbar^2 / t^2 } , where σ\sigma is the width of the position samplings, and tt is the timescale between projections. We determine the modifications to this result when the system is coupled to a thermal environment. We show that the thermal fluctuations become comparable with the quantum fluctuations under the same conditions that decoherence effects come into play. We also study an alternative measure of classical correlations, namely the conditional probability of finding a sequence of position samplings, given that particular initial phase space data have occurred. We use these results to address the issue of the formal interpretation of the probabilities for sequences of position samplings in the decoherent histories approach to quantum mechanics. The decoherence of the histories is also briefly discussed.Comment: 40 pages (plain Tex), Imperial College Preprin

    Decoherent histories analysis of the relativistic particle

    Get PDF
    The Klein-Gordon equation is a useful test arena for quantum cosmological models described by the Wheeler-DeWitt equation. We use the decoherent histories approach to quantum theory to obtain the probability that a free relativistic particle crosses a section of spacelike surface. The decoherence functional is constructed using path integral methods with initial states attached using the (positive definite) ``induced'' inner product between solutions to the constraint equation. The notion of crossing a spacelike surface requires some attention, given that the paths in the path integral may cross such a surface many times, but we show that first and last crossings are in essence the only useful possibilities. Different possible results for the probabilities are obtained, depending on how the relativistic particle is quantized (using the Klein-Gordon equation, or its square root, with the associated Newton-Wigner states). In the Klein-Gordon quantization, the decoherence is only approximate, due to the fact that the paths in the path integral may go backwards and forwards in time. We compare with the results obtained using operators which commute with the constraint (the ``evolving constants'' method).Comment: 51 pages, plain Te
    corecore