34 research outputs found

    Photon Statistics; Nonlinear Spectroscopy of Single Quantum Systems

    Full text link
    A unified description of multitime correlation functions, nonlinear response functions, and quantum measurements is developed using a common generating function which allows a direct comparison of their information content. A general formal expression for photon counting statistics from single quantum objects is derived in terms of Liouville space correlation functions of the material system by making a single assumption that spontaneous emission is described by a master equation

    Cavity-QED tests of representations of canonical commutation relations employed in field quantization

    Full text link
    Various aspects of dissipative and nondissipative decoherence of Rabi oscillations are discussed in the context of field quantization in alternative representations of CCR. Theory is confronted with experiment, and a possibility of more conclusive tests is analyzed.Comment: Discussion of dissipative and nondissipative decoherence is included. Theory is now consistent with the existing data and predictions for new experiments are more reliabl

    Spontaneous emission and level shifts in absorbing disordered dielectrics and dense atomic gases: A Green's function approach

    Get PDF
    Spontaneous emission and Lamb shift of atoms in absorbing dielectrics are discussed. A Green's-function approach is used based on the multipolar interaction Hamiltonian of a collection of atomic dipoles with the quantised radiation field. The rate of decay and level shifts are determined by the retarded Green's-function of the interacting electric displacement field, which is calculated from a Dyson equation describing multiple scattering. The positions of the atomic dipoles forming the dielectrics are assumed to be uncorrelated and a continuum approximation is used. The associated unphysical interactions between different atoms at the same location is eliminated by removing the point-interaction term from the free-space Green's-function (local field correction). For the case of an atom in a purely dispersive medium the spontaneous emission rate is altered by the well-known Lorentz local-field factor. In the presence of absorption a result different from previously suggested expressions is found and nearest-neighbour interactions are shown to be important.Comment: 6 pages no figure

    Nonlocal Reductions of The Multicomponent Nonlinear Schrödinger Equation on Symmetric Spaces

    Get PDF
    Our aim is to develop the inverse scattering transform for multicomponent generalizations of nonlocal reductions of the nonlinear Schrödinger (NLS) equation with PT symmetry related to symmetric spaces. This includes the spectral properties of the associated Lax operator, the Jost function, the scattering matrix, the minimum set of scattering data, and the fundamental analytic solutions. As main examples, we use theManakov vector Schrödinger equation (related to A.III-symmetric spaces) and the multicomponent NLS (MNLS) equations of Kulish–Sklyanin type (related to BD.I-symmetric spaces). Furthermore, we obtain one- and two-soliton solutions using an appropriate modification of the Zakharov–Shabat dressing method. We show that the MNLS equations of these types admit both regular and singular soliton configurations. Finally, we present different examples of one- and two-soliton solutions for both types of models, subject to different reductions
    corecore