564 research outputs found
Correlation functions and emission time sequence of light charged particles from projectile-like fragment source in E/A = 44 and 77 MeV 40Ar + 27Al collisions
Two-particle correlation functions, involving protons, deuterons, tritons,
and alpha-particles, have been measured at very forward angles (0.7 deg <
theta_lab < 7 deg), in order to study projectile-like fragment (PLF) emission
in E/A = 44 and 77 MeV 40Ar + 27Al collisions. Peaks, originating from
resonance decays, are larger at E/A = 44 than at 77 MeV. This reflects the
larger relative importance of independently emitted light particles, as
compared to two-particle decay from unstable fragments, at the higher beam
energy. The time sequence of the light charged particles, emitted from the PLF,
has been deduced from particle-velocity-gated correlation functions (discarding
the contribution from resonance decays). Alpha-particles are found to have an
average emission time shorter than protons but longer than tritons and
deuterons.Comment: 18 pages, 5 figures, submitted to Nuclear Physics
Study of the Fusion-Fission Process in the Reaction
Fusion-fission and fully energy-damped binary processes of the
Cl+Mg reaction were investigated using particle-particle
coincidence techniques at a Cl bombarding energy of E
8 MeV/nucleon. Inclusive data were also taken in order to determine the partial
wave distribution of the fusion process. The fragment-fragment correlation data
show that the majority of events arises from a binary-decay process with a
relatively large multiplicity of secondary light-charged particles emitted by
the two primary excited fragments in the exit channel. No evidence is observed
for ternary-breakup processes, as expected from the systematics recently
established for incident energies below 15 MeV/nucleon and for a large number
of reactions. The binary-process results are compared with predictions of
statistical-model calculations. The calculations were performed using the
Extended Hauser-Feshbach method, based on the available phase space at the
scission point of the compound nucleus. This new method uses
temperature-dependent level densities and its predictions are in good agreement
with the presented experimental data, thus consistent with the fusion-fission
origin of the binary fully-damped yields.Comment: 30 pages standard REVTeX file, 10 eps Figures; to be published at the
European Physical Journal A - Hadrons and Nucle
Isospin diffusion in semi-peripheral + collisions at intermediate energies (I): Experimental results
Isospin diffusion in semi-peripheral collisions is probed as a function of
the dissipated energy by studying two systems + and
+ , over the incident energy range 52-74\AM. A close
examination of the multiplicities of light products in the forward part of
phase space clearly shows an influence of the isospin of the target on the
neutron richness of these products. A progressive isospin diffusion is observed
when collisions become more central, in connection with the interaction time
Properties of projectile-fragments in the Ar + Al reaction at 44 A MeV. Comparison with a multisequential decay model
GANIL-EXPResults on projectile fragment–fragment coincidences in the forward direction and for the reaction 40Ar + 27Al at 44 A MeV are presented and compared with the predictions of two different entrance channel models, a two-body and a three-body mechanism both followed by a binary multisequential decay including fission. This analysis shows that many features of the projectile decay products are well accounted for by the binary multisequential decay model. However the results depend critically upon the initial masses and excitation energies of the primary projectile fragments. In this respect, the three-body approach underestimates the excitation energy imparted to the primary fragments whereas the two-body scenario overestimates it. The present data put strong constraints on the initial excitation energy imparted to the primary fragments which appears to be intermediate between the predictions of the two models
Isospin Diffusion in Ni-Induced Reactions at Intermediate Energies
Isospin diffusion is probed as a function of the dissipated energy by
studying two systems Ni+Ni and Ni+Au, over the
incident energy range 52-74\AM. Experimental data are compared with the results
of a microscopic transport model with two different parameterizations of the
symmetry energy term. A better overall agreement between data and simulations
is obtained when using a symmetry term with a potential part linearly
increasing with nuclear density. The isospin equilibration time at 52 \AM{} is
estimated to 13010 fm/
The prominent role of the heaviest fragment in multifragmentation and phase transition for hot nuclei
The role played by the heaviest fragment in partitions of multifragmenting
hot nuclei is emphasized. Its size/charge distribution (mean value,
fluctuations and shape) gives information on properties of fragmenting nuclei
and on the associated phase transition.Comment: 11 pages, Proceedings of IWND09, August 23-25, Shanghai (China
New approach of fragment charge correlations in 129Xe+(nat)Sn central collisions
A previous analysis of the charge (Z) correlations in the
plane for Xe+Sn central collisions at 32 MeV/u has shown an enhancement in the
production of equally sized fragments (low ) which was interpreted as
an evidence for spinodal decomposition. However the signal is weak and rises
the question of the estimation of the uncorrelated yield. After a critical
analysis of its robustness, we propose in this paper a new technique to build
the uncorrelated yield in the charge correlation function. The application of
this method to Xe+Sn central collision data at 32, 39, 45 and 50 MeV/u does not
show any particular enhancement of the correlation function in any
bin.Comment: 23 pages, 9 figures, revised version with an added figure and minor
changes. To appear in Nuclear Physics
Search for Multifragmentation Near Threshold in the 3-He + Ag Reaction
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
Multifragment Emission in the 3-He + nat-Hg Reaction at 0.90 and 3.6 GeV
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
- …