56 research outputs found

    Laser Interferometric Detectors of Gravitational Waves

    Get PDF
    A laser interferometric detector of gravitational waves is studied and a complete solution (to first order in the metric perturbation) of the coupled Einstein-Maxwell equations with appropriate boundary conditions for the light beams is determined. The phase shift, the light deflection and the rotation of the polarization axis induced by gravitational waves are computed. The results are compared with previous literature, and are shown to hold also for detectors which are large in comparison with the gravitational wavelength.Comment: 13 pages, LaTe

    Vacuum solutions which cannot be written in diagonal form

    Full text link
    A vacuum solution of the Einstein gravitational field equation is given that follows from a general ansatz but fails to follow from it if a certain symmetric matrix is assumed to be in diagonal form from the beginning.Comment: 18 pages, latex, no figures. An Acknowledgement, 4 references, and the section "Note added" are adde

    Time and Observables in Unimodular General Relativity

    Full text link
    A cosmological time variable is emerged from the hamiltonian formulation of unimodular theory of gravity to measure the evolution of dynamical observables in the theory. A set of constants of motion has been identified for the theory on the null hypersurfaces that its evolution is with respect to the volume clock introduced by the cosmological time variable.Comment: 16 page

    Exact Solutions for the Intrinsic Geometry of Black Hole Coalescence

    Get PDF
    We describe the null geometry of a multiple black hole event horizon in terms of a conformal rescaling of a flat space null hypersurface. For the prolate spheroidal case, we show that the method reproduces the pair-of-pants shaped horizon found in the numerical simulation of the head-on-collision of black holes. For the oblate case, it reproduces the initially toroidal event horizon found in the numerical simulation of collapse of a rotating cluster. The analytic nature of the approach makes further conclusions possible, such as a bearing on the hoop conjecture. From a time reversed point of view, the approach yields a description of the past event horizon of a fissioning white hole, which can be used as null data for the characteristic evolution of the exterior space-time.Comment: 21 pages, 6 figures, revtex, to appear in Phys. Rev.

    A new approach to spherically symmetric junction surfaces and the matching of FLRW regions

    Full text link
    We investigate timelike junctions (with surface layer) between spherically symmetric solutions of the Einstein-field equation. In contrast to previous investigations this is done in a coordinate system in which the junction surface motion is absorbed in the metric, while all coordinates are continuous at the junction surface. The evolution equations for all relevant quantities are derived. We discuss the no-surface layer case (boundary surface) and study the behaviour for small surface energies. It is shown that one should expect cases in which the speed of light is reached within a finite proper time. We carefully discuss necessary and sufficient conditions for a possible matching of spherically symmetric sections. For timelike junctions between spherically symmetric space-time sections we show explicitly that the time component of the Lanczos equation always reduces to an identity (independently of the surface equation of state). The results are applied to the matching of FLRW models. We discuss `vacuum bubbles' and closed-open junctions in detail. As illustrations several numerical integration results are presented, some of them indicate that the junction surface can reach the speed of light within a finite time.Comment: new version - corrected boundary surface discussion, improved presentation, and corrected reference 22 pages, many figure

    Gauge Invariant Hamiltonian Formalism for Spherically Symmetric Gravitating Shells

    Full text link
    The dynamics of a spherically symmetric thin shell with arbitrary rest mass and surface tension interacting with a central black hole is studied. A careful investigation of all classical solutions reveals that the value of the radius of the shell and of the radial velocity as an initial datum does not determine the motion of the shell; another configuration space must, therefore, be found. A different problem is that the shell Hamiltonians used in literature are complicated functions of momenta (non-local) and they are gauge dependent. To solve these problems, the existence is proved of a gauge invariant super-Hamiltonian that is quadratic in momenta and that generates the shell equations of motion. The true Hamiltonians are shown to follow from the super-Hamiltonian by a reduction procedure including a choice of gauge and solution of constraint; one important step in the proof is a lemma stating that the true Hamiltonians are uniquely determined (up to a canonical transformation) by the equations of motion of the shell, the value of the total energy of the system, and the choice of time coordinate along the shell. As an example, the Kraus-Wilczek Hamiltonian is rederived from the super-Hamiltonian. The super-Hamiltonian coincides with that of a fictitious particle moving in a fixed two-dimensional Kruskal spacetime under the influence of two effective potentials. The pair consisting of a point of this spacetime and a unit timelike vector at the point, considered as an initial datum, determines a unique motion of the shell.Comment: Some remarks on the singularity of the vector potantial are added and some minor corrections done. Definitive version accepted in Phys. Re

    On the Papapetrou field in vacuum

    Get PDF
    In this paper we study the electromagnetic fields generated by a Killing vector field in vacuum space-times (Papapetrou fields). The motivation of this work is to provide new tools for the resolution of Maxwell's equations as well as for the search, characterization, and study of exact solutions of Einstein's equations. The first part of this paper is devoted to an algebraic study in which we give an explicit and covariant procedure to construct the principal null directions of a Papapetrou field. In the second part, we focus on the main differential properties of the principal directions, studying when they are geodesic, and in that case we compute their associated optical scalars. With this information we get the conditions that a principal direction of the Papapetrou field must satisfy in order to be aligned with a multiple principal direction of the Weyl tensor in the case of algebraically special vacuum space-times. Finally, we illustrate this study using the Kerr, Kasner and pp waves space-times.Comment: 24 pages, LaTeX2e, IOP style. To appear in Classical and Quantum Gravit

    General-relativistic coupling between orbital motion and internal degrees of freedom for inspiraling binary neutron stars

    Get PDF
    We analyze the coupling between the internal degrees of freedom of neutron stars in a close binary, and the stars' orbital motion. Our analysis is based on the method of matched asymptotic expansions and is valid to all orders in the strength of internal gravity in each star, but is perturbative in the ``tidal expansion parameter'' (stellar radius)/(orbital separation). At first order in the tidal expansion parameter, we show that the internal structure of each star is unaffected by its companion, in agreement with post-1-Newtonian results of Wiseman (gr-qc/9704018). We also show that relativistic interactions that scale as higher powers of the tidal expansion parameter produce qualitatively similar effects to their Newtonian counterparts: there are corrections to the Newtonian tidal distortion of each star, both of which occur at third order in the tidal expansion parameter, and there are corrections to the Newtonian decrease in central density of each star (Newtonian ``tidal stabilization''), both of which are sixth order in the tidal expansion parameter. There are additional interactions with no Newtonian analogs, but these do not change the central density of each star up to sixth order in the tidal expansion parameter. These results, in combination with previous analyses of Newtonian tidal interactions, indicate that (i) there are no large general-relativistic crushing forces that could cause the stars to collapse to black holes prior to the dynamical orbital instability, and (ii) the conventional wisdom with respect to coalescing binary neutron stars as sources of gravitational-wave bursts is correct: namely, the finite-stellar-size corrections to the gravitational waveform will be unimportant for the purpose of detecting the coalescences.Comment: 22 pages, 2 figures. Replaced 13 July: proof corrected, result unchange
    corecore