19 research outputs found
On the nature and order of the deconfining transition in QCD
The determination of the parameters of the deconfining transition in N_f=2
QCD is discussed, and its relevance to the understanding of the mechanism of
color confinement.Comment: 10 pages. In honour of Yu. A. Simonov on his seventyth birthday; to
be published in Yadernaya Fizik
Relativistic mass distribution in event-anti-event system and ``realistic'' equation of state for hot hadronic matter
We find the equation of state which gives the value of
the sound velocity in agreement with the ``realistic'' equation of
state for hot hadronic matter suggested by Shuryak, in the framework of a
covariant relativistic statistical mechanics of an event--anti-event system
with small chemical and mass potentials. The relativistic mass distribution for
such a system is obtained and shown to be a good candidate for fitting hadronic
resonances, in agreement with the phenomenological models of Hagedorn, Shuryak,
{\it et al.} This distribution provides a correction to the value of specific
heat 3/2, of the order of 5.5\%, at low temperatures.Comment: 19 pages, report TAUP-2161-9
Chromomagnetic Catalysis of Color Superconductivity in a (2+1)-dimensional NJL Model
The influence of a constant uniform external chromomagnetic field on the
formation of color superconductivity has been investigated. The consideration
was performed in the framework of a (2+1)-dimensional Nambu--Jona-Lasinio model
with two different four-fermionic structures responsible for condensates. In particular, it was shown that there exists a
critical value of the external chromomagnetic field such that at
a nonvanishing diquark condensate is dynamically created (the so-called
chromomagnetic catalysis effect of color superconductivity). Moreover, external
chromomagnetic fields may in some cases enhance the diquark condensate of color
superconductivity.Comment: 32 pages, 2 figures, revte
QED in a Strong External Magnetic Field: Beyond the Constant Mass Approximation
We solve the Schwinger-Dyson equations for QED in 2+1 or 3+1 dimensions in
the presence of a strong homogeneous external magnetic field. The magnetic
field is assumed strong enough, so that the lowest Landau level approximation
holds, but the usual assumption of a momentum-independent self-energy is not
made. In 2+1 dimensions, the scaling with logarithm changes to a square root
dependence on the magnetic field, but the most spectacular result takes place
in 3+1 dimensions, where the constant mass approximation turns out to be
unreliable and the (momentum-dependent) dynamical mass is larger by several
orders of magnitude compared to what has been found till now using the constant
mass approximation.Comment: 21 pages, 8 figures, plain latex, references adde
The Influence of an External Chromomagnetic Field on Color Superconductivity
We study the competition of quark-antiquark and diquark condensates under the
influence of an external chromomagnetic field modelling the gluon condensate
and in dependence on the chemical potential and temperature. As our results
indicate, an external chromomagnetic field might produce remarkable qualitative
changes in the picture of the color superconducting (CSC) phase formation. This
concerns, in particular, the possibility of a transition to the CSC phase and
diquark condensation at finite temperature.Comment: 27 pages, RevTex, 8 figures; the version accepted for the publication
in PRD (few references added; new numerical results added; main conclusions
are not changed
Subthreshold rho^0 photoproduction on 3He
A large reduction of the rho^0 mass in the nuclear medium is reported,
inferred from dipion photoproduction spectra in the 1 GeV region, for the
reaction 3He(gamma,pi+ pi-)X with a 10% duty factor tagged-photon beam and the
TAGX multi-particle spectrometer. The energy range covered (800 < E(gamma) <
1120 MeV) lies mostly below the free rho^0 production threshold, a region which
is believed sensitive to modifications of light vector-meson properties at
nuclear-matter densities. The rho^0 masses extracted from the MC fitting of the
data, m*(rho^0) = 642 +/- 40, 669 +/- 32, and 682 +/- 56 MeV/c^2 for E(gamma)
in the 800-880, 880-960, and 960-1040 MeV regions respectively, are
independently corroborated by a measured, assumption-free, kinematical
observable. This mass shift, far exceeding current mean-field driven
theoretical predictions, may be suggestive of rho^0 decay within the range of
the nucleonic field.Comment: 40 pages, 13 figures, submitted to Phys. Rev.