75 research outputs found
Bifurcation study of a neural field competition model with an application to perceptual switching in motion integration.
Perceptual multistability is a phenomenon in which alternate interpretations of a fixed stimulus are perceived intermittently. Although correlates between activity in specific cortical areas and perception have been found, the complex patterns of activity and the underlying mechanisms that gate multistable perception are little understood. Here, we present a neural field competition model in which competing states are represented in a continuous feature space. Bifurcation analysis is used to describe the different types of complex spatio-temporal dynamics produced by the model in terms of several parameters and for different inputs. The dynamics of the model was then compared to human perception investigated psychophysically during long presentations of an ambiguous, multistable motion pattern known as the barberpole illusion. In order to do this, the model is operated in a parameter range where known physiological response properties are reproduced whilst also working close to bifurcation. The model accounts for characteristic behaviour from the psychophysical experiments in terms of the type of switching observed and changes in the rate of switching with respect to contrast. In this way, the modelling study sheds light on the underlying mechanisms that drive perceptual switching in different contrast regimes. The general approach presented is applicable to a broad range of perceptual competition problems in which spatial interactions play a role
Exploring Species Limits in Two Closely Related Chinese Oaks
Background. The species status of two closely related Chinese oaks, Quercus liaotungensis and Q. mongolica, has been called into question. The objective of this study was to investigate the species status and to estimate the degree of introgression between the two taxa using different approaches. [br/]
Methodology/Principal Findings. Using SSR (simple sequence repeat) and AFLP (amplified fragment length polymorphism) markers, we found that interspecific genetic differentiation is significant and higher than the differentiation among populations within taxa. Bayesian clusters, principal coordinate analysis and population genetic distance trees all classified the oaks into two main groups consistent with the morphological differentiation of the two taxa rather than with geographic locations using both types of markers. Nevertheless, a few individuals in Northeast China and many individuals in North China have hybrid ancestry according to Bayesian assignment. One SSR locus and five AFLPs are significant outliers against neutral expectations in the interspecific FST simulation analysis, suggesting a role for divergent selection in differentiating species.[br/]
Main Conclusions/Significance. All results based on SSRs and AFLPs reached the same conclusion: Q. liaotungensis and Q. mongolica maintain distinct gene pools in most areas of sympatry. They should therefore be considered as discrete taxonomic units. Yet, the degree of introgression varies between the two species in different contact zones, which might be caused by different population history or by local environmental factors
Recurrent network dynamics reconciles visual motion segmentation and integration
In sensory systems, a range of computational rules are presumed to be implemented by neuronal subpopulations with different tuning functions. For instance, in primate cortical area MT, different classes of direction-selective cells have been identified and related either to motion integration, segmentation or transparency. Still, how such different tuning properties are constructed is unclear. The dominant theoretical viewpoint based on a linear-nonlinear feed-forward cascade does not account for their complex temporal dynamics and their versatility when facing different input statistics. Here, we demonstrate that a recurrent network model of visual motion processing can reconcile these different properties. Using a ring network, we show how excitatory and inhibitory interactions can implement different computational rules such as vector averaging, winner-take-all or superposition. The model also captures ordered temporal transitions between these behaviors. In particular, depending on the inhibition regime the network can switch from motion integration to segmentation, thus being able to compute either a single pattern motion or to superpose multiple inputs as in motion transparency. We thus demonstrate that recurrent architectures can adaptively give rise to different cortical computational regimes depending upon the input statistics, from sensory flow integration to segmentation
26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017
This work was produced as part of the activities of FAPESP Research,\ud
Disseminations and Innovation Center for Neuromathematics (grant\ud
2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud
FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud
supported by a CNPq fellowship (grant 306251/2014-0)
- …