921 research outputs found

    Probing the Active Massive Black Hole Candidate in the Center of NGC 404 with VLBI

    Get PDF
    Recently Nyland et al. (2012) argued that the radio emission observed in the center of the dwarf galaxy NGC 404 originates in a low-luminosity active galactic nucleus (LLAGN) powered by a massive black hole (M<106M\sim<10^6 M_{\odot}). High-resolution radio detections of MBHs are rare. Here we present sensitive, contemporaneous Chandra X-ray, and very long baseline interferometry (VLBI) radio observations with the European VLBI Network (EVN). The source is detected in the X-rays, and shows no long-term variability. If the hard X-ray source is powered by accretion, the apparent low accretion efficiency would be consistent with a black hole in the hard state. Hard state black holes are known to show radio emission compact on the milliarcsecond scales. However, the central region of NGC 404 is resolved out on 10 milliarcsecond (0.15-1.5 pc) scales. Our VLBI non-detection of a compact, partially self-absorbed radio core in NGC 404 implies that either the black hole mass is smaller than 32+5×1053^{+5}_{-2}\times10^5 M_{\odot}, or the source does not follow the fundamental plane of black hole activity relation. An alternative explanation is that the central black hole is not in the hard state. The radio emission observed on arcsecond (tens of pc) scales may originate in nuclear star formation or extended emission due to AGN activity, although the latter would not be typical considering the structural properties of low-ionization nuclear emission-line region galaxies (LINERs) with confirmed nuclear activity.Comment: Accepted for publication in the Astrophysical Journal. 7 pages, 2 figures, 1 tabl

    The Stable Roommates problem with short lists = A stabil szobatársprobléma rövid preferencialistákkal

    Get PDF

    A schematic model for QCD I: Low energy meson states

    Full text link
    A simple model for QCD is presented, which is able to reproduce the meson spectrum at low energy. The model is a Lipkin type model for quarks coupled to gluons. The basic building blocks are pairs of quark-antiquarks coupled to a definite flavor and spin. These pairs are coupled to pairs of gluons with spin zero. The multiplicity problem, which dictates that a given experimental state can be described in various manners, is removed when a particle-mixing interaction is turned on. In this first paper of a series we concentrates on the discussion of meson states at low energy, the so-called zero temperature limit of the theory. The treatment of baryonic states is indicated, also.Comment: 29 pages, 6 figures. submitted to Phys. Rev.

    Clusterization in the shape isomers of the 56Ni nucleus

    Get PDF
    The interrelation of the quadrupole deformation and clusterization is investigated in the example of the 56Ni nucleus. The shape isomers, including superdeformed and hyperdeformed states, are obtained as stability regions of the quasidynamical U(3) symmetry based on a Nilsson calculation. Their possible binary clusterizations are investigated by considering both the consequences of the Pauli exclusion principle and the energetic preference

    The XMM-Newton Slew view of IGRJ17361-4441: a transient in the globular cluster NGC 6388

    Full text link
    IGRJ17361-4441 is a hard transient recently observed by the INTEGRAL satellite. The source, close to the center of gravity of the globular cluster NGC 6388, quickly became the target of follow-up observations conducted by the Chandra, Swift/XRT and RXTE observatories. Here, we concentrate in particular on a set of observations conducted by the XMM-Newton satellite during two slews, in order to get the spectral information of the source and search for spectral variations. The spectral parameters determined by the recent XMM-Newton slew observations were compared to the previously known results. The maximum unabsorbed XX-ray flux in the 0.5-10 keV band as detected by the XMM-Newton slew observations is 4.5×1011\simeq 4.5\times 10^{-11} erg cm2^{-2} s1^{-1}, i.e. consistent with that observed by the Swift/XRT satellite 15 days earlier. The spectrum seems to be marginally consistent (Γ0.931.63\Gamma\simeq 0.93-1.63) with that derived from the previous high energy observation.Comment: Accepted for publication on New Astronomy, 2012. A sentence about the globular cluster 47 Tuc was partially rewritten to avoid confusio

    Estimation of Nuclear DNA Content in Some Aegilops Species: Best Analyzed Using Flow Cytometry

    Get PDF
    The genera Triticum and Aegilops have been considered as the main gene pool of wheat due to their features, such as tolerance of all types of abiotic and biotic stresses. This study was conducted to evaluate the cytogenetic analyses in 115 native and wild populations from eleven Aegilops species using their nuclear DNA quantification. Mean 2C nuclear DNA contents of different ploidy levels in the wild wheat of Turkey and Iran were measured using the flow cytometry technique. The obtained results showed that the mean nuclear DNA content in diploid species varied from 10.09 pg/2C (Ae. umbellulata) to 10.95 pg/2C (Ae. speltoides var. ligustica) in Turkey. In Iranian diploids, the mean nuclear DNA content varied from 10.20 pg/2C (Ae. taushii) to 11.56 pg/2C (Ae. speltoides var. ligustica). This index in the tetraploid species of Turkey varied from 18.09 pg/2C (Ae. cylindrica) to 21.65 pg/2C (Ae. triaristata), and in Iranian species, it was from 18.61 pg/2C (Ae. cylindrica) to 21.75 pg/2C (Ae. columnaris). On the other hand, in the hexaploid species of Turkey, this index varied from 31.59 pg/2C (Ae. crassa) to 31.81 pg/2C (Ae. cylindrica); in the Iranian species, it varied from 32.58 pg/2C (Ae. cylindrica) to 33.97 pg/2C (Ae. crassa). There was a significant difference in the DNA content of Turkey and Iran diploid as well as tetraploid species; however, in hexaploid species, the difference was not significant. It was concluded that the variation in intraspecific genome size was very low in diploid and tetraploid populations; this means that the low variation is not dependent on geographic and climatic parameters. On the other hand, the interspecific variation is significant at the diploid and tetraploid populations. It is generally very difficult to distinguish Aegilops species from each other in natural conditions; meanwhile, in this study, all species could be, easily, quickly and unambiguously, distinguished and separated using the FCM technique
    corecore