545 research outputs found
Strategies for analyzing tone languages
This paper outlines a method of auditory and acoustic analysis for determining the tonemes of a language starting from scratch, drawing on the author’s experience of recording and analyzing tone languages of north-east India. The methodology is applied to a preliminary analysis of tone in the Thang dialect of Khiamniungan, a virtually undocumented language of extreme eastern Nagaland and adjacent areas of the Sagaing Division Myanmar (Burma). Following a discussion of strategies for ensuring that data appropriate for tonal analysis will be recorded, the practical demonstration begins with a description of how tone categories can be established according to their syllable type in the preliminary auditory analysis. The paper then uses this data to describe a method of acoustic analysis that ultimately permits the representation of pitch shapes as a function of absolute mean duration. The analysis of grammatical tones, floating tones and tone sandhi are exemplified with Mongsen Ao data, and a description of a perception test demonstrates how this can be used to corroborate the auditory and acoustic analysis of a tone system. *This paper is in the series How to Study a Tone Language, edited by Steven Bird and Larry HymanNational Foreign Language Resource Cente
Multi-Scale Phenology of Temperate Grasslands: Improving Monitoring and Management With Near-Surface Phenocams
Grasslands of the Australian Southern Tablelands represent a patchwork of native and exotic systems, occupying a continuum of C3-dominated to C4-dominated grasslands where composition depends on disturbance factors (e.g., grazing) and climate. Managing these complex landscapes is both challenging and critical for maintaining the security of Australia's pasture industries, and for protecting the biodiversity of native remnants. Differentiating C3 from C4 vegetation has been a prominent theme in remote sensing research due to distinct C3/C4 seasonal productivity patterns (phenology) and high uncertainty about how C3/C4 vegetation will respond to a changing climate. Phenology is used in northern hemisphere ecosystems for a range of purposes but has not been widely adopted in Australia, where dynamic climate often results in non-repetitive seasonal vegetation patterns. We employed time-lapse cameras (phenocams) to study the phenology of twelve grassland areas dominated by cool season (C3) and warm season (C4), native or exotic grasses near Canberra, Australia. Our aims were to assess phenological characteristics of the functional types and to determine the drivers of phenological variability. We compared the fine-scale phenocam seasonal profiles with field sampling and MODIS/Landsat satellite products to assess paddock-to-landscape functioning. We found C3/C4 species dominance to be the primary driver of phenological differences among grassland types, with C3 grasslands demonstrating peak greenness in spring, and senescing rapidly in response to high summer temperatures. In contrast, C4 grasslands showed peak activity in Austral summer and autumn (January-March). Some sites displayed primary and secondary peaks dependent on rainfall and species composition. We found that the proportion of dead vegetation is an important biophysical driver of grassland phenology, as were grazing pressures and species-dependent responses to rainfall and temperature. The satellite and field datasets were in general agreement with the phenocam results. However, the higher temporal fidelity of the cameras captured changes in vegetation not observed in the coarser satellite or field results. Our phenocam data shows consistent periods of increasing and decreasing greenness over as little as 5 days. Applications for management of grasslands in temperate Australia include the identification of remnant native grasslands, tracking biosecurity issues, and assessing productivity responses to climate variability
Do plant species influence soil CO2 and N2O fluxes in a diverse tropical forest?
To test whether plant species influence greenhouse gas production in diverse ecosystems, we measured wet season soil CO2 and N2O fluxes close to ~300 large (>35 cm in diameter at breast height (DBH)) trees of 15 species at three clay-rich forest sites in central Amazonia. We found that soil CO2 fluxes were 38% higher near large trees than at control sites >10 m away from any tree (P < 0.0001). After adjusting for large tree presence, a multiple linear regression of soil temperature, bulk density, and liana DBH explained 19% of remaining CO2 flux variability. Soil N2O fluxes adjacent to Caryocar villosum, Lecythis lurida, Schefflera morototoni, and Manilkara huberi were 84%-196% greater than Erisma uncinatum and Vochysia maxima, both Vochysiaceae. Tree species identity was the most important explanatory factor for N2O fluxes, accounting for more than twice the N2O flux variability as all other factors combined. Two observations suggest a mechanism for this finding: (1) sugar addition increased N2O fluxes near C. villosum twice as much (P < 0.05) as near Vochysiaceae and (2) species mean N2O fluxes were strongly negatively correlated with tree growth rate (P = 0.002). These observations imply that through enhanced belowground carbon allocation liana and tree species can stimulate soil CO2 and N2O fluxes (by enhancing denitrification when carbon limits microbial metabolism). Alternatively, low N2O fluxes potentially result from strong competition of tree species with microbes for nutrients. Species-specific patterns in CO2 and N2O fluxes demonstrate that plant species can influence soil biogeochemical processes in a diverse tropical forest
Soil moisture controls on phenology and productivity in a semi-arid critical zone
© 2016 Elsevier B.V. The Earth's Critical Zone, where physical, chemical and biological systems interact, extends from the top of the canopy to the underlying bedrock. In this study, we investigated soil moisture controls on phenology and productivity of an Acacia woodland in semi-arid central Australia. Situated on an extensive sand plain with negligible runoff and drainage, the carry-over of soil moisture content (θ) in the rhizosphere enabled the delay of phenology and productivity across seasons, until conditions were favourable for transpiration of that water to prevent overheating in the canopy. Storage of soil moisture near the surface (in the top few metres) was promoted by a siliceous hardpan. Pulsed recharge of θ above the hardpan was rapid and depended upon precipitation amount: 150 mm storm− 1 resulted in saturation of θ above the hardpan (i.e., formation of a temporary, discontinuous perched aquifer above the hardpan in unconsolidated soil) and immediate carbon uptake by the vegetation. During dry and inter-storm periods, we inferred the presence of hydraulic lift from soil storage above the hardpan to the surface due to (i) regular daily drawdown of θ in the reservoir that accumulates above the hardpan in the absence of drainage and evapotranspiration; (ii) the dimorphic root distribution wherein most roots were found in dry soil near the surface, but with significant root just above the hardpan; and (iii) synchronisation of phenology amongst trees and grasses in the dry season. We propose that hydraulic redistribution provides a small amount of moisture that maintains functioning of the shallow roots during long periods when the surface soil layer was dry, thereby enabling Mulga to maintain physiological activity without diminishing phenological and physiological responses to precipitation when conditions were favourable to promote canopy cooling
Land surface phenological response to decadal climate variability across Australia using satellite remote sensing
© 2014 Author(s). Land surface phenological cycles of vegetation greening and browning are influenced by variability in climatic forcing. Quantitative spatial information on phenological cycles and their variability is important for agricultural applications, wildfire fuel accumulation, land management, land surface modeling, and climate change studies. Most phenology studies have focused on temperature-driven Northern Hemisphere systems, where phenology shows annually recurring patterns. However, precipitation-driven non-annual phenology of arid and semi-arid systems (i.e., drylands) received much less attention, despite the fact that they cover more than 30% of the global land surface. Here, we focused on Australia, a continent with one of the most variable rainfall climates in the world and vast areas of dryland systems, where a detailed phenological investigation and a characterization of the relationship between phenology and climate variability are missing. To fill this knowledge gap, we developed an algorithm to characterize phenological cycles, and analyzed geographic and climate-driven variability in phenology from 2000 to 2013, which included extreme drought and wet years. We linked derived phenological metrics to rainfall and the Southern Oscillation Index (SOI). We conducted a continent-wide investigation and a more detailed investigation over the Murray-Darling Basin (MDB), the primary agricultural area and largest river catchment of Australia. Results showed high inter-and intra-annual variability in phenological cycles across Australia. The peak of phenological cycles occurred not only during the austral summer, but also at any time of the year, and their timing varied by more than a month in the interior of the continent. The magnitude of the phenological cycle peak and the integrated greenness were most significantly correlated with monthly SOI within the preceding 12 months. Correlation patterns occurred primarily over northeastern Australia and within the MDB, predominantly over natural land cover and particularly in floodplain and wetland areas. Integrated greenness of the phenological cycles (surrogate of vegetation productivity) showed positive anomalies of more than 2 standard deviations over most of eastern Australia in 2009-2010, which coincided with the transition from the El Niño-induced decadal droughts to flooding caused by La Niña
Does Amazon forest leaf phenology mediate transpiration seasonality and hence, ecoclimate teleconnections?
Abstract OOS 11-5
Scoping Potential Routes to UK Civil Unrest via the Food System: Results of a Structured Expert Elicitation
We report the results of a structured expert elicitation to identify the most likely types of potential food system disruption scenarios for the UK, focusing on routes to civil unrest. We take a backcasting approach by defining as an end-point a societal event in which 1 in 2000 people have been injured in the UK, which 40% of experts rated as “Possible (20–50%)”, “More likely than not (50–80%)” or “Very likely (>80%)” over the coming decade. Over a timeframe of 50 years, this increased to 80% of experts. The experts considered two food system scenarios and ranked their plausibility of contributing to the given societal scenario. For a timescale of 10 years, the majority identified a food distribution problem as the most likely. Over a timescale of 50 years, the experts were more evenly split between the two scenarios, but over half thought the most likely route to civil unrest would be a lack of total food in the UK. However, the experts stressed that the various causes of food system disruption are interconnected and can create cascading risks, highlighting the importance of a systems approach. We encourage food system stakeholders to use these results in their risk planning and recommend future work to support prevention, preparedness, response and recovery planning
Understanding water and energy fluxes in the Amazonia: Lessons from an observation-model intercomparison
Tropical forests are an important part of global water and energy cycles, but the mechanisms that drive seasonality of their land-atmosphere exchanges have proven challenging to capture in models. Here, we (1) report the seasonality of fluxes of latent heat (LE), sensible heat (H), and outgoing short and longwave radiation at four diverse tropical forest sites across Amazonia—along the equator from the Caxiuanã and Tapajós National Forests in the eastern Amazon to a forest near Manaus, and from the equatorial zone to the southern forest in Reserva Jaru; (2) investigate how vegetation and climate influence these fluxes; and (3) evaluate land surface model performance by comparing simulations to observations. We found that previously identified failure of models to capture observed dry-season increases in evapotranspiration (ET) was associated with model overestimations of (1) magnitude and seasonality of Bowen ratios (relative to aseasonal observations in which sensible was only 20%–30% of the latent heat flux) indicating model exaggerated water limitation, (2) canopy emissivity and reflectance (albedo was only 10%–15% of incoming solar radiation, compared to 0.15%–0.22% simulated), and (3) vegetation temperatures (due to underestimation of dry-season ET and associated cooling). These partially compensating model-observation discrepancies (e.g., higher temperatures expected from excess Bowen ratios were partially ameliorated by brighter leaves and more interception/evaporation) significantly biased seasonal model estimates of net radiation (Rn), the key driver of water and energy fluxes (LE ~ 0.6 Rn and H ~ 0.15 Rn), though these biases varied among sites and models. A better representation of energy-related parameters associated with dynamic phenology (e.g., leaf optical properties, canopy interception, and skin temperature) could improve simulations and benchmarking of current vegetation–atmosphere exchange and reduce uncertainty of regional and global biogeochemical models
Fires increase Amazon forest productivity through increases in diffuse radiation
Atmospheric aerosol scatters solar radiation increasing the fraction of diffuse radiation and the efficiency of photosynthesis. We quantify the impacts of biomass burning aerosol (BBA) on diffuse radiation and plant photosynthesis across Amazonia during 1998-2007. Evaluation against observed aerosol optical depth allows us to provide lower and upper BBA emissions estimates. BBA increases Amazon basin annual mean diffuse radiation by 3.4-6.8% and net primary production (NPP) by 1.4-2.8%, with quoted ranges driven by uncertainty in BBA emissions. The enhancement of Amazon basin NPP by 78-156TgCa-1 is equivalent to 33-65% of the annual regional carbon emissions from biomass burning. This NPP increase occurs during the dry season and acts to counteract some of the observed effect of drought on tropical production. We estimate that 30-60TgCa-1 of this NPP enhancement is within woody tissue, accounting for 8-16% of the observed carbon sink across mature Amazonian forests
- …