65 research outputs found
Recommended from our members
Measurement of the atmospheric muon charge ratio at TeV energies with MINOS
The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 m.w.e. in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be N{sub {mu}}+/N{sub {mu}}-=1.374{+-}0.004(stat)-0.010{sup +0.012}(sys). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the 2 standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3-1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio
Recommended from our members
Charge-separated atmospheric neutrino-induced muons in the MINOS far detector
We found 140 neutrino-induced muons in 854.24 live days in the MINOS far detector, which has an acceptance for neutrino-induced muons of 6.91 x 10{sup 6} cm{sup 2} sr. We looked for evidence of neutrino disappearance in this data set by computing the ratio of the number of low momentum muons to the sum of the number of high momentum and unknown momentum muons for both data and Monte Carlo expectation in the absence of neutrino oscillations. The ratio of data and Monte Carlo ratios, R, is R = 0.65{sub 0.12}{sup +0.15}(stat) {+-} 0.09(syst), a result that is consistent with an oscillation signal. A fit to the data for the oscillation parameters sin{sup 2} 2{theta}{sub 23} and {Delta}m{sub 23}{sup 2} excludes the null oscillation hypothesis at the 94% confidence level. We separated the muons into {mu}{sup -} and {mu}{sup +} in both the data and Monte Carlo events and found the ratio of the total number of {mu}{sup -} to {mu}{sup +} in both samples. The ratio of those ratios, {cflx R}{sub CPT}, is a test of CPT conservation. The result {cflx R}{sub CPT} = 0.72{sub -0.18}{sup +0.24}(stat){sub -0.04}{sup +0.08}(syst), is consistent with CPT conservation
Relativistic Nucleus-Nucleus Collisions and the QCD Matter Phase Diagram
This review will be concerned with our knowledge of extended matter under the
governance of strong interaction, in short: QCD matter. Strictly speaking, the
hadrons are representing the first layer of extended QCD architecture. In fact
we encounter the characteristic phenomena of confinement as distances grow to
the scale of 1 fm (i.e. hadron size): loss of the chiral symmetry property of
the elementary QCD Lagrangian via non-perturbative generation of "massive"
quark and gluon condensates, that replace the bare QCD vacuum. However, given
such first experiences of transition from short range perturbative QCD
phenomena (jet physics etc.), toward extended, non perturbative QCD hadron
structure, we shall proceed here to systems with dimensions far exceeding the
force range: matter in the interior of heavy nuclei, or in neutron stars, and
primordial matter in the cosmological era from electro-weak decoupling (10^-12
s) to hadron formation (0.5 10^-5 s). This primordial matter, prior to
hadronization, should be deconfined in its QCD sector, forming a plasma (i.e.
color conducting) state of quarks and gluons: the Quark Gluon Plasma (QGP).Comment: 146 pages, 83 figure
Recommended from our members
Averages of B-Hadron, C-Hadron, and Tau-Lepton Properties as of Early 2012
This report talks about Averages of B-Hadron, C-Hadron, and Tau-Lepton Properties as of Early 201
Recommended from our members
Proposal of the Next Incarnation of Accelerator Test Facility at KEK for the International Linear Collider
To reach design luminosity, the International Linear Collider (ILC) must be able to create and reliably maintain nanometer size beams. The ATF damping ring is the unique facility where ILC emittances are possible. In this paper we present and evaluate the proposal to create a final focus facility at the ATF which, using compact final focus optics and an ILC-like bunch train, would be capable of achieving 37 nm beam size. Such a facility would enable the development of beam diagnostics and tuning methods, as well as the training of young accelerator physicists
Neurology in the United Kingdom. I: Historical development.
International comparisons suggest that British neurological services are underdeveloped. Historical factors which have contributed to the current state of neurological services in the United Kingdom are described. Key issues include the dominance of London and the concept of specialised hospitals in the early history of neurology; the subsequent recognition of the needs of other parts of the United Kingdom, of district general hospitals, and of patients with chronic neurological disabilities not necessarily included within the traditional bounds of neurology; and the relationship between neurology and general medicine. The paper concludes with some suggestions as to how neurology services might develop in the future
Exciton energy of the InAs/GaAs self-assembled quantum dot in a semiconductor microcavity
We report on the theoretical study of the interaction of the quantum dot (QD) exciton with the photon waveguide models in a semiconductor microcavity. The InAs/GaAs self-assembled QD exciton energies are calculated in a microcavity. The calculated results reveal that the electromagnetic field reduces the exciton energies in a semiconductor microcavity. The effect of the electromagnetic field decreases as the radius of the QD increases. Our calculated results are useful for designing and fabricating photoelectron devices
Nonlinear fatigue damage model based on the residual strength degradation law
In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples
Energy Levels of Hydrogenic Impurities in InAs Quantum Ring
The distribution of energy levels of the ground state and the low-lying excited states of hydrogenic impurities in InAs quantum ring was investigated by applying the effective mass approximation and the perturbation method. In 2D polar coordinates, the exact solution to the Schrodinger equation was used to calculate the perturbation integral in a parabolic confinement potential. The numerical results show that the energy levels of electron are sensitively dependent on the radius of the quantum ring and a minimum exists on account of the parabolic confinement potential. With decreasing the radius, the energy spacing between energy levels increases. The degenerate energy levels of the first excited state for hydrogenic impurities are not relieved, and when the degenerate energy levels are split and the energy spacing will increase with the increase in the radius. The energy spacing between energy levels of electron is also sensitively dependent on the angular frequency and will increase with the increases in it. The degenerate energy levels of the first excited state are not relieved. The degenerate energy levels of the second excited state are relieved partially. The change in angular frequency will have a profound effect upon the calculation of the energy levels of the ground state and the low-lying excited states of hydrogenic impurities in InAs quantum ring. The conclusions of this paper will provide important guidance to investigating the optical transitions and spectral structures in quantum ring
- …
