65 research outputs found

    Relativistic Nucleus-Nucleus Collisions and the QCD Matter Phase Diagram

    Full text link
    This review will be concerned with our knowledge of extended matter under the governance of strong interaction, in short: QCD matter. Strictly speaking, the hadrons are representing the first layer of extended QCD architecture. In fact we encounter the characteristic phenomena of confinement as distances grow to the scale of 1 fm (i.e. hadron size): loss of the chiral symmetry property of the elementary QCD Lagrangian via non-perturbative generation of "massive" quark and gluon condensates, that replace the bare QCD vacuum. However, given such first experiences of transition from short range perturbative QCD phenomena (jet physics etc.), toward extended, non perturbative QCD hadron structure, we shall proceed here to systems with dimensions far exceeding the force range: matter in the interior of heavy nuclei, or in neutron stars, and primordial matter in the cosmological era from electro-weak decoupling (10^-12 s) to hadron formation (0.5 10^-5 s). This primordial matter, prior to hadronization, should be deconfined in its QCD sector, forming a plasma (i.e. color conducting) state of quarks and gluons: the Quark Gluon Plasma (QGP).Comment: 146 pages, 83 figure

    Neurology in the United Kingdom. I: Historical development.

    No full text
    International comparisons suggest that British neurological services are underdeveloped. Historical factors which have contributed to the current state of neurological services in the United Kingdom are described. Key issues include the dominance of London and the concept of specialised hospitals in the early history of neurology; the subsequent recognition of the needs of other parts of the United Kingdom, of district general hospitals, and of patients with chronic neurological disabilities not necessarily included within the traditional bounds of neurology; and the relationship between neurology and general medicine. The paper concludes with some suggestions as to how neurology services might develop in the future

    Exciton energy of the InAs/GaAs self-assembled quantum dot in a semiconductor microcavity

    No full text
    We report on the theoretical study of the interaction of the quantum dot (QD) exciton with the photon waveguide models in a semiconductor microcavity. The InAs/GaAs self-assembled QD exciton energies are calculated in a microcavity. The calculated results reveal that the electromagnetic field reduces the exciton energies in a semiconductor microcavity. The effect of the electromagnetic field decreases as the radius of the QD increases. Our calculated results are useful for designing and fabricating photoelectron devices

    Nonlinear fatigue damage model based on the residual strength degradation law

    No full text
    In this paper, a logarithmic expression to describe the residual strength degradation process is developed in order to fatigue test results for normalized carbon steel. The definition and expression of fatigue damage due to symmetrical stress with a constant amplitude are also given. The expression of fatigue damage can also explain the nonlinear properties of fatigue damage. Furthermore, the fatigue damage of structures under random stress is analyzed, and an iterative formula to describe the fatigue damage process is deduced. Finally, an approximate method for evaluating the fatigue life of structures under repeated random stress blocking is presented through various calculation examples

    Energy Levels of Hydrogenic Impurities in InAs Quantum Ring

    No full text
    The distribution of energy levels of the ground state and the low-lying excited states of hydrogenic impurities in InAs quantum ring was investigated by applying the effective mass approximation and the perturbation method. In 2D polar coordinates, the exact solution to the Schrodinger equation was used to calculate the perturbation integral in a parabolic confinement potential. The numerical results show that the energy levels of electron are sensitively dependent on the radius of the quantum ring and a minimum exists on account of the parabolic confinement potential. With decreasing the radius, the energy spacing between energy levels increases. The degenerate energy levels of the first excited state for hydrogenic impurities are not relieved, and when the degenerate energy levels are split and the energy spacing will increase with the increase in the radius. The energy spacing between energy levels of electron is also sensitively dependent on the angular frequency and will increase with the increases in it. The degenerate energy levels of the first excited state are not relieved. The degenerate energy levels of the second excited state are relieved partially. The change in angular frequency will have a profound effect upon the calculation of the energy levels of the ground state and the low-lying excited states of hydrogenic impurities in InAs quantum ring. The conclusions of this paper will provide important guidance to investigating the optical transitions and spectral structures in quantum ring
    corecore