53 research outputs found

    Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Common carp is one of the most important aquaculture teleost fish in the world. Common carp and other closely related Cyprinidae species provide over 30% aquaculture production in the world. However, common carp genomic resources are still relatively underdeveloped. BAC end sequences (BES) are important resources for genome research on BAC-anchored genetic marker development, linkage map and physical map integration, and whole genome sequence assembling and scaffolding.</p> <p>Result</p> <p>To develop such valuable resources in common carp (<it>Cyprinus carpio</it>), a total of 40,224 BAC clones were sequenced on both ends, generating 65,720 clean BES with an average read length of 647 bp after sequence processing, representing 42,522,168 bp or 2.5% of common carp genome. The first survey of common carp genome was conducted with various bioinformatics tools. The common carp genome contains over 17.3% of repetitive elements with GC content of 36.8% and 518 transposon ORFs. To identify and develop BAC-anchored microsatellite markers, a total of 13,581 microsatellites were detected from 10,355 BES. The coding region of 7,127 genes were recognized from 9,443 BES on 7,453 BACs, with 1,990 BACs have genes on both ends. To evaluate the similarity to the genome of closely related zebrafish, BES of common carp were aligned against zebrafish genome. A total of 39,335 BES of common carp have conserved homologs on zebrafish genome which demonstrated the high similarity between zebrafish and common carp genomes, indicating the feasibility of comparative mapping between zebrafish and common carp once we have physical map of common carp.</p> <p>Conclusion</p> <p>BAC end sequences are great resources for the first genome wide survey of common carp. The repetitive DNA was estimated to be approximate 28% of common carp genome, indicating the higher complexity of the genome. Comparative analysis had mapped around 40,000 BES to zebrafish genome and established over 3,100 microsyntenies, covering over 50% of the zebrafish genome. BES of common carp are tremendous tools for comparative mapping between the two closely related species, zebrafish and common carp, which should facilitate both structural and functional genome analysis in common carp.</p

    Organizational Heterogeneity of Vertebrate Genomes

    Get PDF
    Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as “texts” using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS) analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers) in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter - GDM) allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences

    France

    No full text

    Learning from implicit learning literature: comment on Shea, Wulf, Whitacre, and Park (2001)

    No full text
    In their analysis of complex motor skill learning, Shea, Wulf, Whitacre, and Park (2001) have overlooked one of the most robust conclusions of the experimental studies on implicit learning conducted during the last decade--namely that participants usually learn things that are different from those that the experimenter expected them to learn. We show that the available literature on implicit learning strongly suggests that the improved performance in Shea et al.'s Experiments 1 and 2 (and similar earlier experiments, e.g. Wulf & Schmidt, 1997) was due to the exploitation of regularities in the target pattern different from those on which the postexperimental interview focused. This rules out the conclusions drawn from the failure of this interview to reveal any explicit knowledge about the task structure on the part of the participants. Similarly, because the information about the task structure provided to an instructed group of participants in Shea et al.'s Experiment 2 did not concern the regularities presumably exploited by the standard, so-called implicit, group, Shea et al.'s claim that explicit knowledge may be less effective than implicit knowledge is misleading.CommentJournal Articleinfo:eu-repo/semantics/publishe

    Pancreatic endopeptidase E

    No full text
    corecore