38 research outputs found

    Prospects of inflation with perturbed throat geometry

    Get PDF
    We study brane inflation in a warped deformed conifold background that includes general possible corrections to the throat geometry sourced by coupling to the bulk of a compact Calabi-Yau space. We focus specifically, on the perturbation by chiral operator of dimension 3/2 in the CFT. We find that the effective potential in this case can give rise to required number of e-foldings and the spectral index nSn_S consistent with observation. The tensor to scalar ratio of perturbations is generally very low in this scenario. The COBE normalization, however, poses certain difficulties which can be circumvented provided model parameters are properly fine tuned. We find the numerical values of parameters which can give rise to enough inflation, observationally consistent values of density perturbations, scalar to tensor ratio of perturbations and the spectral index nSn_S.Comment: 7 pages and nine figures; typos corrected, minor comments and clarifications added, revised version to appear in PL

    A note on dark energy induced by D-brane motion

    Full text link
    In this note we study the possibility of obtaining dark energy solution in a D-brane scenario in a warped background that includes brane-position dependent corrections for the non-perturbative superpotential. The volume modulus is stabilized at instantaneous minima of the potential. Though the model can account for the existence of dark energy within present observational bound - fine-tuning of the model parameters becomes unavoidable. Moreover, the model does not posses a tracker solution.Comment: 5 pages, 4 figure

    Cosmic acceleration in a model of scalar-tensor gravitation

    Full text link
    In this paper we consider a model of scalar-tensor theory of gravitation in which the scalar field, ϕ\phi determines the gravitational coupling G and has a Lagrangian of the form, Lϕ=V(ϕ)1μϕμϕ\mathcal{L}_{\phi} =-V(\phi)\sqrt{1 - \partial_{\mu}\phi\partial^{\mu}\phi}. We study the cosmological consequence of this theory in the matter dominated era and show that this leads to a transition from an initial decelerated expansion to an accelerated expansion phase at the present epoch. Using observational constraints, we see that the effective equation of state today for the scalar field turns out to be pϕ=wϕρϕp_{\phi}=w_{\phi}{\rho}_{\phi}, with wϕ=0.88w_{\phi}=-0.88 and that the transition to an accelerated phase happened at a redshift of about 0.3.Comment: 12 pages, 2 figures, matches published versio

    On the evolution of tachyonic perturbations at super-Hubble scales

    Full text link
    In the slow-roll inflationary scenario, the amplitude of the curvature perturbations approaches a constant value soon after the modes leave the Hubble radius. However, relatively recently, it was shown that the amplitude of the curvature perturbations induced by the canonical scalar field can grow at super-Hubble scales if there is either a transition to fast roll inflation or if inflation is interrupted for some period of time. In this work, we extend the earlier analysis to the case of a non-canonical scalar field described by the Dirac-Born-Infeld action. With the help of a specific example, we show that the amplitude of the tachyonic perturbations can be enhanced or suppressed at super-Hubble scales if there is a transition from slow roll to fast roll inflation. We also illustrate as to how the growth of the entropy perturbations during the fast roll regime proves to be responsible for the change in the amplitude of the curvature perturbations at super-Hubble scales. Furthermore, following the earlier analysis for the canonical scalar field, we show that the power spectrum evaluated in the long wavelength approximation matches the exact power spectrum obtained numerically very well. Finally, we briefly comment on an application of this phenomenon.Comment: v1: 15 pages, 4 figures; v2: 16 pages, 5 figures, power spectrum included, discussion in section 5 enlarged, references added; v3: 17 pages, 5 figures, enhancement AS WELL AS suppression of modes at super-Hubble scales pointed out, title changed, discussions enlarged, references added, to appear in JCA

    Warm tachyonic inflation in warped background

    Full text link
    We analyze warm tachyonic inflation, proposed in the literature, but from the viewpoint of four dimensional effective action for tachyon field on a non-BPS D3-brane. We find that consistency with observational data on density perturbation and validity of effective action requires warped compactification. The number of background branes which source the flux is found to be of the order of 10 in contrast to the order of 101410^{14} in the standard cold inflationary scenario.Comment: 9 pages, RevTe

    New features of flat (4+1)-dimensional cosmological model with a perfect fluid in Gauss-Bonnet gravity

    Full text link
    We investigated a flat multidimensional cosmological model in Gauss-Bonnet gravity in presence of a matter in form of perfect fluid. We found analytically new stationary regimes (these results are valid for arbitrary number of spatial dimensions) and studied their stability by means of numerical recipes in 4+1-dimensional case. In the vicinity of the stationary regime we discovered numerically another non-singular regime which appears to be periodical. Finally, we demonstrated that the presence of matter in form of a perfect fluid lifts some constraints on the dynamics of the 4+1-dimensional model which have been found earlier.Comment: 14 pages, 5 figures, 1 table; v2 minor corrections, conclusions unchange

    Pseudo-forces in quantum mechanics

    Get PDF
    Dynamical evolution is described as a parallel section on an infinite dimensional Hilbert bundle over the base manifold of all frames of reference. The parallel section is defined by an operator-valued connection whose components are the generators of the relativity group acting on the base manifold. In the case of Galilean transformations we show that the property that the curvature for the fundamental connection must be zero is just the Heisenberg equations of motion and the canonical commutation relation in geometric language. We then consider linear and circular accelerating frames and show that pseudo-forces must appear naturally in the Hamiltonian.Comment: 6 pages, 1 figure, revtex, new section added, to appear in PR

    A Phase Transition between Small and Large Field Models of Inflation

    Full text link
    We show that models of inflection point inflation exhibit a phase transition from a region in parameter space where they are of large field type to a region where they are of small field type. The phase transition is between a universal behavior, with respect to the initial condition, at the large field region and non-universal behavior at the small field region. The order parameter is the number of e-foldings. We find integer critical exponents at the transition between the two phases.Comment: 21 pages, 8 figure

    Statistical nature of non-Gaussianity from cubic order primordial perturbations: CMB map simulations and genus statistic

    Full text link
    We simulate CMB maps including non-Gaussianity arising from cubic order perturbations of the primordial gravitational potential, characterized by the non-linearity parameter gNLg_{NL}. The maps are used to study the characteristic nature of the resulting non-Gaussian temperature fluctuations. We measure the genus and investigate how it deviates from Gaussian shape as a function of gNLg_{NL} and smoothing scale. We find that the deviation of the non-Gaussian genus curve from the Gaussian one has an antisymmetric, sine function like shape, implying more hot and more cold spots for gNL>0g_{NL}>0 and less of both for gNL<0g_{NL}<0. The deviation increases linearly with gNLg_{NL} and also exhibits mild increase as the smoothing scale increases. We further study other statistics derived from the genus, namely, the number of hot spots, the number of cold spots, combined number of hot and cold spots and the slope of the genus curve at mean temperature fluctuation. We find that these observables carry signatures of gNLg_{NL} that are clearly distinct from the quadratic order perturbations, encoded in the parameter fNLf_{NL}. Hence they can be very useful tools for distinguishing not only between non-Gaussian temperature fluctuations and Gaussian ones but also between gNLg_{NL} and fNLf_{NL} type non-Gaussianities.Comment: 18+1 page

    Aspects of Tachyonic Inflation with Exponential Potential

    Full text link
    We consider issues related to tachyonic inflation with exponential potential. We find exact solution of evolution equations in the slow roll limit in FRW cosmology. We also carry out similar analysis in case of Brane assisted tachyonic inflation. We investigate the phase space behavior of the system and show that the dust like solution is a late time attractor. The difficulties associated with reheating in the tachyonic model are also indicated.Comment: New References added. To appear in Phys. Rev.
    corecore