106,596 research outputs found

    Recursive Integral Method with Cayley Transformation

    Full text link
    Recently, a non-classical eigenvalue solver, called RIM, was proposed to compute (all) eigenvalues in a region on the complex plane. Without solving any eigenvalue problem, it tests if a region contains eigenvalues using an approximate spectral projection. Regions that contain eigenvalues are subdivided and tested recursively until eigenvalues are isolated with a specified precision. This makes RIM an eigensolver distinct from all existing methods. Furthermore, it requires no a priori spectral information. In this paper, we propose an improved version of {\bf RIM} for non-Hermitian eigenvalue problems. Using Cayley transformation and Arnoldi's method, the computation cost is reduced significantly. Effectiveness and efficiency of the new method are demonstrated by numerical examples and compared with 'eigs' in Matlab

    Localization of Relative-Position of Two Atoms Induced by Spontaneous Emission

    Full text link
    We revisit the back-action of emitted photons on the motion of the relative position of two cold atoms. We show that photon recoil resulting from the spontaneous emission can induce the localization of the relative position of the two atoms through the entanglement between the spatial motion of individual atoms and their emitted photons. The result provides a more realistic model for the analysis of the environment-induced localization of a macroscopic object.Comment: 8 pages and 4 figure

    Phantom Energy Accretion onto Black Holes in Cyclic Universe

    Full text link
    Black holes pose a serious problem in the cyclic or oscillating cosmology. It is speculated that, in the cyclic universe with phantom turnarounds, black holes will be torn apart by the phantom energy before turnaround before they can create any problems. In this paper, using the mechanism of the phantom accretion onto black holes, we find that black holes do not disappear before the phantom turnaround. But the remanent black holes will not cause any problems due to the Hawking evaporation.Comment: 8 pages, no figure; typographical errors are correcte

    Binomial coefficients, Catalan numbers and Lucas quotients

    Full text link
    Let pp be an odd prime and let a,ma,m be integers with a>0a>0 and m≑̸0(modp)m \not\equiv0\pmod p. In this paper we determine βˆ‘k=0paβˆ’1(2kk+d)/mk\sum_{k=0}^{p^a-1}\binom{2k}{k+d}/m^k mod p2p^2 for d=0,1d=0,1; for example, βˆ‘k=0paβˆ’1(2kk)mk≑(m2βˆ’4mpa)+(m2βˆ’4mpaβˆ’1)upβˆ’(m2βˆ’4mp)(modp2),\sum_{k=0}^{p^a-1}\frac{\binom{2k}k}{m^k}\equiv\left(\frac{m^2-4m}{p^a}\right)+\left(\frac{m^2-4m}{p^{a-1}}\right)u_{p-(\frac{m^2-4m}{p})}\pmod{p^2}, where (βˆ’)(-) is the Jacobi symbol, and {un}nβ©Ύ0\{u_n\}_{n\geqslant0} is the Lucas sequence given by u0=0u_0=0, u1=1u_1=1 and un+1=(mβˆ’2)unβˆ’unβˆ’1u_{n+1}=(m-2)u_n-u_{n-1} for n=1,2,3,…n=1,2,3,\ldots. As an application, we determine βˆ‘0<k<pa, k≑r(modpβˆ’1)Ck\sum_{0<k<p^a,\, k\equiv r\pmod{p-1}}C_k modulo p2p^2 for any integer rr, where CkC_k denotes the Catalan number (2kk)/(k+1)\binom{2k}k/(k+1). We also pose some related conjectures.Comment: 24 pages. Correct few typo

    Phantom Accretion by Five Dimensional Charged Black Hole

    Full text link
    This paper deals with the dynamical behavior of phantom field near five dimensional charged black hole. We formulate equations of motion for steady-state spherically symmetric flow of phantom fluids. It is found that phantom energy accretes onto black holes for u<0u<0. Further, the location of critical point of accretion are evaluated that leads to mass to charge ratio for 5D charged black hole. This ratio implies that accretion cannot transform a black hole into a naked singularity. We would like to mention here that this work is an irreducible extension of 4D charged black hole.Comment: 8 pages, accepted for publication in Mod. Phys. Lett.
    • …
    corecore