557 research outputs found

    Effects of Self-field and Low Magnetic Fields on the Normal-Superconducting Phase Transition

    Full text link
    Researchers have studied the normal-superconducting phase transition in the high-TcT_c cuprates in a magnetic field (the vortex-glass or Bose-glass transition) and in zero field. Often, transport measurements in "zero field" are taken in the Earth's ambient field or in the remnant field of a magnet. We show that fields as small as the Earth's field will alter the shape of the current vs. voltage curves and will result in inaccurate values for the critical temperature TcT_c and the critical exponents ν\nu and zz, and can even destroy the phase transition. This indicates that without proper screening of the magnetic field it is impossible to determine the true zero-field critical parameters, making correct scaling and other data analysis impossible. We also show, theoretically and experimentally, that the self-field generated by the current flowing in the sample has no effect on the current vs. voltage isotherms.Comment: 4 pages, 4 figure

    Normal-Superconducting Phase Transition Mimicked by Current Noise

    Full text link
    As a superconductor goes from the normal state into the superconducting state, the voltage vs. current characteristics at low currents change from linear to non-linear. We show theoretically and experimentally that the addition of current noise to non-linear voltage vs. current curves will create ohmic behavior. Ohmic response at low currents for temperatures below the critical temperature TcT_c mimics the phase transition and leads to incorrect values for TcT_c and the critical exponents ν\nu and zz. The ohmic response occurs at low currents, when the applied current I0I_0 is smaller than the width of the probability distribution σI\sigma_I, and will occur in both the zero-field transition and the vortex-glass transition. Our results indicate that the transition temperature and critical exponents extracted from the conventional scaling analysis are inaccurate if current noise is not filtered out. This is a possible explanation for the wide range of critical exponents found in the literature.Comment: 4 pages, 2 figure

    Probing the limits of superconductivity

    Full text link
    DC voltage versus current measurements of superconductors in a magnetic field are widely interpreted to imply that a phase transition occurs into a state of zero resistance. We show that the widely-used scaling function approach has a problem: Good data collapse occurs for a wide range of critical exponents and temperatures. This strongly suggests that agreement with scaling alone does not prove the existence of the phase transition. We discuss a criterion to determine if the scaling analysis is valid, and find that all of the data in the literature that we have analyzed fail to meet this criterion. Our data on YBCO films, and other data that we have analyzed, are more consistent with the occurrence of small but non-zero resistance at low temperature.Comment: 13 page pdf file, figures included To be published in conference proceedings of SPIE 200

    Comparison of coherence times in three dc SQUID phase qubits

    Full text link
    We report measurements of spectroscopic linewidth and Rabi oscillations in three thin-film dc SQUID phase qubits. One device had a single-turn Al loop, the second had a 6-turn Nb loop, and the third was a first order gradiometer formed from 6-turn wound and counter-wound Nb coils to provide isolation from spatially uniform flux noise. In the 6 - 7.2 GHz range, the spectroscopic coherence times for the gradiometer varied from 4 ns to 8 ns, about the same as for the other devices (4 to 10 ns). The time constant for decay of Rabi oscillations was significantly longer in the single-turn Al device (20 to 30 ns) than either of the Nb devices (10 to 15 ns). These results imply that spatially uniform flux noise is not the main source of decoherence or inhomogenous broadening in these devices.Comment: 4 pages, 5 figures, accepted for publication in IEEE Trans. Appl. Supercon

    Quantum logic gates for coupled superconducting phase qubits

    Full text link
    Based on a quantum analysis of two capacitively coupled current-biased Josephson junctions, we propose two fundamental two-qubit quantum logic gates. Each of these gates, when supplemented by single-qubit operations, is sufficient for universal quantum computation. Numerical solutions of the time-dependent Schroedinger equation demonstrate that these operations can be performed with good fidelity.Comment: 4 pages, 5 figures, revised for publicatio
    • …
    corecore