47,913 research outputs found
Conformal Symmetry and Pion Form Factor: Soft and Hard Contributions
We discuss a constraint of conformal symmetry in the analysis of the pion
form factor. The usual power-law behavior of the form factor obtained in the
perturbative QCD analysis can also be attained by taking negligible quark
masses in the nonperturbative quark model analysis, confirming the recent
AdS/CFT correspondence. We analyze the transition from soft to hard
contributions in the pion form factor considering a momentum-dependent
dynamical quark mass from a nonnegligible constituent quark mass at low
momentum region to a negligible current quark mass at high momentum region. We
find a correlation between the shape of nonperturbative quark distribution
amplitude and the amount of soft and hard contributions to the pion form
factor.Comment: 7 pages, 6 figures, extensively revised, to appear in Phys. Rev.
Relatively hyperbolic groups, rapid decay algebras, and a generalization of the Bass conjecture
By deploying dense subalgebras of we generalize the Bass
conjecture in terms of Connes' cyclic homology theory. In particular, we
propose a stronger version of the -Bass Conjecture. We prove that
hyperbolic groups relative to finitely many subgroups, each of which posses the
polynomial conjugacy-bound property and nilpotent periodicity property, satisfy
the -Stronger-Bass Conjecture. Moreover, we determine the
conjugacy-bound for relatively hyperbolic groups and compute the cyclic
cohomology of the -algebra of any discrete group.Comment: 32 pages, 2 figures; added an appendix also by C. Ogl
Effective field theory description of halo nuclei
Nuclear halos emerge as new degrees of freedom near the neutron and proton
driplines. They consist of a core and one or a few nucleons which spend most of
their time in the classically-forbidden region outside the range of the
interaction. Individual nucleons inside the core are thus unresolved in the
halo configuration, and the low-energy effective interactions are short-range
forces between the core and the valence nucleons. Similar phenomena occur in
clusters of He atoms, cold atomic gases near a Feshbach resonance, and some
exotic hadrons. In these weakly-bound quantum systems universal scaling laws
for s-wave binding emerge that are independent of the details of the
interaction. Effective field theory (EFT) exposes these correlations and
permits the calculation of non-universal corrections to them due to
short-distance effects, as well as the extension of these ideas to systems
involving the Coulomb interaction and/or binding in higher angular-momentum
channels. Halo nuclei exhibit all these features. Halo EFT, the EFT for halo
nuclei, has been used to compute the properties of single-neutron, two-neutron,
and single-proton halos of s-wave and p-wave type. This review summarizes these
results for halo binding energies, radii, Coulomb dissociation, and radiative
capture, as well as the connection of these properties to scattering
parameters, thereby elucidating the universal correlations between all these
observables. We also discuss how Halo EFT's encoding of the long-distance
physics of halo nuclei can be used to check and extend ab initio calculations
that include detailed modeling of their short-distance dynamics.Comment: 104 pages, 31 figures. Topical Review for Journal of Physics G. v2
incorporates several modifications, particularly to the Introduction, in
response to referee reports. It also corrects multiple typos in the original
submission. It corresponds to the published versio
Chiral-Odd and Spin-Dependent Quark Fragmentation Functions and their Applications
We define a number of quark fragmentation functions for spin-0, -1/2 and -1
hadrons, and classify them according to their twist, spin and chirality. As an
example of their applications, we use them to analyze semi-inclusive
deep-inelastic scattering on a transversely polarized nucleon.Comment: 19 pages in Plain TeX, MIT CTP #221
- …