3 research outputs found

    Development of Canavalia ensiformis in soil contaminated with diesel oil

    No full text
    Hydrocarbons are the main components of diesel oil and are toxic for the majority of plants. A few plant species, known as phytoremediators, are tolerant of hydrocarbons and can survive the stressful conditions of soils contaminated with diesel oil. Canavalia ensiformis, a plant species that is well distributed throughout the tropics, possesses advantageous features for a potential resistance to soil contamination, such as fast growth and a deep root system. Thus, the aim of the present study was to evaluate the tolerance of C. ensiformis when it was exposed to soil contaminated with diesel oil. Seedlings were subjected to two treatments: contaminated soil (CS) (95 ml/kg of diesel oil) and non-contaminated soil (NCS) for a period of 30 days; its growth, morphology, anatomy, and physiology were analyzed. Despite the high level of toxicity, some individuals were able to survive in CS. These plants had root apical meristems with high levels of mitosis and were able to issue new roots with more developed aerenchyma tissue. Because the surviving plants presented no marks of cellular damage on the organs formed (root and leaves) during the experiment, the species capacity of growth on CS was confirmed. Although, long-term field experiments, applying different contaminant concentrations, should be considered to infer about the species resistance and use as phytoremediator241979986CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQsem informaçã

    Germination and initial growth of Campomanesia xanthocarpa O. Berg. (Myrtaceae), in petroleum-contaminated soil and bioremediated soil

    No full text
    In 2000 there was an oil spill at the Getúlio Vargas Refinery (REPAR) in Paraná. Nearly five years after contamination and the use of bioremediation, a study was carried out to identify the effects of the contaminated soil and the bioremediated soil on the germination and initial growth of C. xanthocarpa. The experiment was established with soil from REPAR, with three treatment groups: contaminated soil (C), bioremediated soil (B) and uncontaminated soil (U); with five repetitions of 50 seeds each. There was no significant difference in the percentage of germination and the speed of germination index. The production of total biomass (30 - 60 days) and shoot biomass (60 days) was greater in the bioremediated soil compared to the other treatments. The averages for the root biomass were lower in the contaminated soil than in the bioremediated soil. The shoot length and the total length of the seedling in the contaminated soil and uncontaminated soil were lower than in the bioremediated soil
    corecore