35 research outputs found

    Potential Neurotoxicity of Ketamine in the Developing Rat Brain

    No full text
    Ketamine, an N-methyl-D-aspartate (NMDA) receptor ion channel blocker, is a widely used anesthetic recently reported to enhance neuronal death in developing rodents and nonhuman primates. This study evaluated dose-response and time-course effects of ketamine, levels of ketamine in plasma and brain, and the relationship between altered NMDA receptor expression and ketamine-induced neuronal cell death during development. Postnatal day 7 rats were administered 5, 10, or 20 mg/kg ketamine using single or multiple injections (subcutaneously) at 2-h intervals, and the potential neurotoxic effects were examined 6 h after the last injection. No significant neurotoxic effects were detected in layers II or III of the frontal cortex of rats administered one, three, or six injections of 5 or 10 mg/kg ketamine. However, in rats administered six injections of 20 mg/kg ketamine, a significant increase in the number of caspase-3- and Fluoro-Jade C–positive neuronal cells was observed in the frontal cortex. Electron microscopic observations showed typical nuclear condensation and fragmentation indicating enhanced apoptotic characteristics. Increased cell death was also apparent in other brain regions. In addition, apoptosis occurred after plasma and brain levels of ketamine had returned to baseline levels. In situ hybridization also showed a remarkable increase in mRNA signals for the NMDA NR1 subunit in the frontal cortex. These data demonstrate that ketamine administration results in a dose-related and exposure-time dependent increase in neuronal cell death during development. Ketamine-induced cell death appears to be apoptotic in nature and closely associated with enhanced NMDA receptor subunit mRNA expression

    Translational Biomarkers of Neurotoxicity:A Health and Environmental Sciences Institute Perspective on the Way Forward

    No full text
    Neurotoxicity has been linked to a number of common drugs and chemicals, yet efficient and accurate methods to detect it are lacking. There is a need for more sensitive and specific biomarkers of neurotoxicity that can help diagnose and predict neurotoxicity that are relevant across animal models and translational from nonclinical to clinical data. Fluid-based biomarkers such as those found in serum, plasma, urine, and cerebrospinal fluid (CSF) have great potential due to the relative ease of sampling compared with tissues. Increasing evidence supports the potential utility of fluid-based biomarkers of neurotoxicity such as microRNAs, F(2)-isoprostanes, translocator protein, glial fibrillary acidic protein, ubiquitin C-terminal hydrolase L1, myelin basic protein, microtubule-associated protein-2, and total tau. However, some of these biomarkers such as those in CSF require invasive sampling or are specific to one disease such as Alzheimer’s, while others require further validation. Additionally, neuroimaging methodologies, including magnetic resonance imaging, magnetic resonance spectroscopy, and positron emission tomography, may also serve as potential biomarkers and have several advantages including being minimally invasive. The development of biomarkers of neurotoxicity is a goal shared by scientists across academia, government, and industry and is an ideal topic to be addressed via the Health and Environmental Sciences Institute (HESI) framework which provides a forum to collaborate on key challenging scientific topics. Here we utilize the HESI framework to propose a consensus on the relative potential of currently described biomarkers of neurotoxicity to assess utility of the selected biomarkers using a nonclinical model
    corecore