1,138 research outputs found

    Evidence for magnetoplasmon character of the cyclotron resonance response of a two-dimensional electron gas

    Full text link
    Experimental results on the absolute magneto-transmission of a series of high density, high mobility GaAs quantum wells are compared with the predictions of a recent magnetoplasmon theory for values of the filling factor above 2. We show that the magnetoplasmon picture can explain the non-linear features observed in the magnetic field evolution of the cyclotron resonance energies and of the absorption oscillator strength. This provides experimental evidence that inter Landau level excitations probed by infrared spectroscopy need to be considered as many body excitations in terms of magnetoplasmons: this is especially true when interpreting the oscillator strengths of the cyclotron transitions

    Quantum transport in a curved one-dimensional quantum wire with spin-orbit interactions

    Full text link
    The one-dimensional effective Hamiltonian for a planar curvilinear quantum wire with arbitrary shape is proposed in the presence of the Rashba spin-orbit interaction. Single electron propagation through a device of two straight lines conjugated with an arc has been investigated and the analytic expressions of the reflection and transmission probabilities have been derived. The effects of the device geometry and the spin-orbit coupling strength α\alpha on the reflection and transmission probabilities and the conductance are investigated in the case of spin polarized electron incidence. We find that no spin-flip exists in the reflection of the first junction. The reflection probabilities are mainly influenced by the arc angle and the radius, while the transmission probabilities are affected by both spin-orbit coupling and the device geometry. The probabilities and the conductance take the general behavior of oscillation versus the device geometry parameters and α\alpha . Especially the electron transportation varies periodically versus the arc angle θw\theta_{w}. We also investigate the relationship between the conductance and the electron energy, and find that electron resonant transmission occurs for certain energy. Finally, the electron transmission for the incoming electron with arbitrary state is considered. For the outgoing electron, the polarization ratio is obtained and the effects of the incoming electron state are discussed. We find that the outgoing electron state can be spin polarization and reveal the polarized conditions.Comment: 7 pages, 8 figure

    On the number of bound states for weak perturbations of spin-orbit Hamiltonians

    Full text link
    We give a variational proof of the existence of infinitely many bound states below the continuous spectrum for some weak perturbations of a class of spin-orbit Hamiltonians including the Rashba and Dresselhaus Hamiltonians

    Spin relaxation in an InAs quantum dot in the presence of terahertz driving fields

    Full text link
    The spin relaxation in a 1D InAs quantum dot with the Rashba spin-orbit coupling under driving THz magnetic fields is investigated by developing the kinetic equation with the help of the Floquet-Markov theory, which is generalized to the system with the spin-orbit coupling, to include both the strong driving field and the electron-phonon scattering. The spin relaxation time can be effectively prolonged or shortened by the terahertz magnetic field depending on the frequency and strength of the terahertz magnetic field. The effect can be understood as the sideband-modulated spin-phonon scattering. This offers an additional way to manipulate the spin relaxation time.Comment: 8 pages, 1 figure, to be published in PR

    Direct measurement of a pure spin current by a polarized light beam

    Full text link
    The photon helicity may be mapped to a spin-1/2, whereby we put forward an intrinsic interaction between a polarized light beam as a ``photon spin current'' and a pure spin current in a semiconductor, which arises from the spin-orbit coupling in valence bands as a pure relativity effect without involving the Rashba or the Dresselhaus effect due to inversion asymmetries. The interaction leads to circular optical birefringence, which is similar to the Faraday rotation in magneto-optics but nevertheless involve no net magnetization. The birefringence effect provide a direct, non-demolition measurement of pure spin currents.Comment: Erratum version to [Physical Review Letter 100, 086603 (2008)

    Massive Spin Collective Mode in Quantum Hall Ferromagnet

    Full text link
    It is shown that the collective spin rotation of a single Skyrmion in quantum Hall ferromagnet can be regarded as precession of the entire spin texture in the external magnetic field, with an effective moment of inertia which becomes infinite in the zero g-factor limit. This low-lying spin excitation may dramatically enhance the nuclear spin relaxation rate via the hyperfine interaction in the quantum well slightly away from filling factor equal one.Comment: 4 page

    Evanescent states in 2D electron systems with spin-orbit interaction and spin-dependent transmission through a barrier

    Full text link
    We find that the total spectrum of electron states in a bounded 2D electron gas with spin-orbit interaction contains two types of evanescent states lying in different energy ranges. The first-type states fill in a gap, which opens in the band of propagating spin-splitted states if tangential momentum is nonzero. They are described by a pure imaginary wavevector. The states of second type lie in the forbidden band. They are described by a complex wavevector. These states give rise to unusual features of the electron transmission through a lateral potential barrier with spin-orbit interaction, such as an oscillatory dependence of the tunneling coefficient on the barrier width and electron energy. But of most interest is the spin polarization of an unpolarized incident electron flow. Particularly, the transmitted electron current acquires spin polarization even if the distribution function of incident electrons is symmetric with respect to the transverse momentum. The polarization efficiency is an oscillatory function of the barrier width. Spin filtering is most effective, if the Fermi energy is close to the barrier height.Comment: 9 pages, 9 figures, more general boundary conditions are used, typos correcte

    Quasi-ballistic transport in HgTe quantum-well nanostructures

    Full text link
    The transport properties of micrometer scale structures fabricated from high-mobility HgTe quantum-wells have been investigated. A special photoresist and Ti masks were used, which allow for the fabrication of devices with characteristic dimensions down to 0.45 μ\mum. Evidence that the transport properties are dominated by ballistic effects in these structures is presented. Monte Carlo simulations of semi-classical electron trajectories show good agreement with the experiment.Comment: 3 pages, 3 figures; minor revisions: replaced "inelastic mean free path" with "transport mean free path"; corrected typing errors; restructered most paragraphs for easier reading; accepted for publication in AP

    Spin-polarized electric currents in quantum transport through tubular two-dimensional electron gases

    Full text link
    Scattering theory is employed to derive a Landauer-type formula for the spin and the charge currents, through a finite region where spin-orbit interactions are effective. It is shown that the transmission matrix yields the spatial direction and the magnitude of the spin polarization. This formula is used to study the currents through a tubular two-dimensional electron gas. In this cylindrical geometry, which may be realized in experiment, the transverse conduction channels are not mixed (provided that the spin-orbit coupling is uniform). It is then found that for modest boundary scattering, each step in the quantized conductance is split into two, and the new steps have a non-zero spin conductance, with the spin polarization perpendicular to the direction of the current.Comment: 6 pages, 5 figure

    Propagation of the First Flames in Type Ia Supernovae

    Get PDF
    We consider the competition of the different physical processes that can affect the evolution of a flame bubble in a Type Ia supernovae -- burning, turbulence and buoyancy. Even in the vigorously turbulent conditions of a convecting white dwarf, thermonuclear burning that begins at a point near the center (within 100 km) of the star is dominated by the spherical laminar expansion of the flame, until the burning region reaches kilometers in size. Consequently flames that ignite in the inner ~20 km promptly burn through the center, and flame bubbles anywhere must grow quite large--indeed, resolvable by large-scale simulations of the global system--for significant motion or deformation occur. As a result, any hot-spot that successfully ignites into a flame can burn a significant amount of white dwarf material. This potentially increases the stochastic nature of the explosion compared to a scenario where a simmering progenitor can have small early hot-spots float harmlessly away. Further, the size where the laminar flame speed dominates other relevant velocities sets a characteristic scale for fragmentation of larger flame structures, as nothing--by definition--can easily break the burning region into smaller volumes. This makes possible the development of semi-analytic descriptions of the earliest phase of the propagation of burning in a Type Ia supernovae, which we present here. Our analysis is supported by fully resolved numerical simulations of flame bubbles.Comment: 33 pages, 14 figures, accepted for publication in Ap
    • …
    corecore