461 research outputs found

    Non-rigid hole band in the extended t-J model

    Full text link
    The dispersion of one hole in an extended tt-JJ model with additional hopping terms to second and third nearest neighbours and a frustration term in the exchange part has been investigated. Two methods, a Green's function projection technique describing a magnetic polaron of minimal size and the exact diagonalization of a 4∗44*4 lattice, have been applied, showing reasonable agreement among each other. Using additional hopping integrals which are characteristic for the CuO2_2 plane in cuprates we find in the nonfrustrated case an isotropic minimum of the dispersion at the point (π/2,π/2)(\pi/2,\pi/2) in kk-space in good coincidence with recent angle-resolved photoemission results for the insulating compound Sr2_2CuO2_2Cl2_2. Including frustration or finite temperature which shall simulate the effect of doping, the dispersion is drastically changed such that a flat region and an extended saddle point may be observed between (π/2,0)(\pi/2,0) and (π,0)(\pi,0) in agreement with experimental results for the optimally doped cuprates.Comment: 14 pages, LaTeX, 6 figures on request, submitted to Zeitschrift fuer Physi

    Comparison of non-crossing perturbative approach and generalized projection method for strongly coupled spin-fermion systems at low doping

    Full text link
    We analyze the two-dimensional spin-fermion model in the strong coupling regime relevant to underdoped cuprates. We recall the set of general sumrules that relate moments of spectral density and the imaginary part of fermion self-energy with static correlation functions. We show that two-pole approximation of projection method satisfies the sumrules for first four moments of spectral density and gives an exact upper bound for quasiparticle energy near the band bottom. We prove that non-crossing approximation that is often made in perturbative consideration of the model violates the sumrule for third moment of spectral density. This leads to wrong position of lowest quasiparticle band. On the other hand, the projection method is inadequate in weak coupling limit because of approximate treatment of kinetic energy term. We propose a generalization of projection method that overcomes this default and give the fermion self-energy that correctly behaves both in weak and strong coupling limits.Comment: 9 pages, 4 EPS figures, RevTe

    Spin polaron damping in the spin-fermion model for cuprate superconductors

    Full text link
    A self-consistent, spin rotational invariant Green's function procedure has been developed to calculate the spectral function of carrier excitations in the spin-fermion model for the CuO2 plane. We start from the mean field description of a spin polaron in the Mori-Zwanzig projection method. In order to determine the spin polaron lifetime in the self-consistent Born approximation, the self-energy is expressed by an irreducible Green's function. Both, spin polaron and bare hole spectral functions are calculated. The numerical results show a well pronounced quasiparticle peak near the bottom of the dispersion at (pi/2,pi/2), the absence of the quasiparticle at the Gamma-point, a rather large damping away from the minimum and an asymmetry of the spectral function with respect to the antiferromagnetic Brillouin zone. These findings are in qualitative agreement with photoemission data for undoped cuprates. The direct oxygen-oxygen hopping is responsible for a more isotropic minimum at (pi/2,pi/2).Comment: 18 pages, 13 figure

    Is normalization necessary for stable model reference adaptive control?

    No full text
    Published versio

    Linear electric field frequency shift (important for next generation electric dipole moment searches) induced in confined gases by a magnetic field gradient

    Get PDF
    The search for particle electric dipole moments (edm) represents a most promising way to search for physics beyond the standard model. A number of groups are planning a new generation of experiments using stored gases of various kinds. In order to achieve the target sensitivities it will be necessary to deal with the systematic error resulting from the interaction of the well-known v→×E→\overrightarrow{v}\times \overrightarrow{E} field with magnetic field gradients (often referred to as the geometric phase effect (Commins, ED; Am. J. Phys. \QTR{bf}{59}, 1077 (1991), Pendlebury, JM \QTR{em}{et al;} Phys. Rev. \QTR{bf}{A70}, 032102 (2004)). This interaction produces a frequency shift linear in the electric field, mimicking an edm. In this work we introduce an analytic form for the velocity auto-correlation function which determines the velocity-position correlation function which in turn determines the behavior of the frequency shift (Lamoreaux, SK and Golub, R; Phys. Rev \QTR{bf}{A71}, 032104 (2005)) and show how it depends on the operating conditions of the experiment. We also discuss some additional issues.Comment: 21 pages, 5 figure

    Testing T Invariance in the Interaction of Slow Neutrons with Aligned Nuclei

    Full text link
    The study of five-fold (P even, T odd) correlation in the interaction of slow polarized neutrons with aligned nuclei is a possible way of testing the time reversal invariance due to the expected enhancement of T violating effects in compound resonances. Possible nuclear targets are discussed which can be aligned both dynamically as well as by the "brute force" method at low temperature. A statistical estimation is performed of the five-fold correlation for low lying p wave compound resonances of the 121^{121}Sb, 123^{123}Sb and 127^{127}I nuclei. It is shown that a significant improvement can be achieved for the bound on the intensity of the fundamental parity conserving time violating (PCTV) interaction.Comment: 22 pages, 5 figures, published versio
    • …
    corecore