4,588 research outputs found
Dynamical solutions of a quantum Heisenberg spin glass model
We consider quantum-dynamical phenomena in the ,
infinite-range quantum Heisenberg spin glass. For a fermionic generalization of
the model we formulate generic dynamical self-consistency equations. Using the
Popov-Fedotov trick to eliminate contributions of the non-magnetic fermionic
states we study in particular the isotropic model variant on the spin space.
Two complementary approximation schemes are applied: one restricts the quantum
spin dynamics to a manageable number of Matsubara frequencies while the other
employs an expansion in terms of the dynamical local spin susceptibility. We
accurately determine the critical temperature of the spin glass to
paramagnet transition. We find that the dynamical correlations cause an
increase of by 2% compared to the result obtained in the spin-static
approximation. The specific heat exhibits a pronounced cusp at .
Contradictory to other reports we do not observe a maximum in the -curve
above .Comment: 8 pages, 7 figure
Magic wavelengths for the transition in rubidium
Magic wavelengths, for which there is no differential ac Stark shift for the
ground and excited state of the atom, allow trapping of excited Rydberg atoms
without broadening the optical transition. This is an important tool for
implementing quantum gates and other quantum information protocols with Rydberg
atoms, and reliable theoretical methods to find such magic wavelengths are thus
extremely useful. We use a high-precision all-order method to calculate magic
wavelengths for the transition of rubidium, and compare the
calculation to experiment by measuring the light shift for atoms held in an
optical dipole trap at a range of wavelengths near a calculated magic value
Localization of a polymer in random media: Relation to the localization of a quantum particle
In this paper we consider in detail the connection between the problem of a
polymer in a random medium and that of a quantum particle in a random
potential. We are interested in a system of finite volume where the polymer is
known to be {\it localized} inside a low minimum of the potential. We show how
the end-to-end distance of a polymer which is free to move can be obtained from
the density of states of the quantum particle using extreme value statistics.
We give a physical interpretation to the recently discovered one-step
replica-symmetry-breaking solution for the polymer (Phys. Rev. E{\bf 61}, 1729
(2000)) in terms of the statistics of localized tail states. Numerical
solutions of the variational equations for chains of different length are
performed and compared with quenched averages computed directly by using the
eigenfunctions and eigenenergies of the Schr\"odinger equation for a particle
in a one-dimensional random potential. The quantities investigated are the
radius of gyration of a free gaussian chain, its mean square distance from the
origin and the end-to-end distance of a tethered chain. The probability
distribution for the position of the chain is also investigated. The glassiness
of the system is explained and is estimated from the variance of the measured
quantities.Comment: RevTex, 44 pages, 13 figure
The dusty environment of Quasars. Far-IR properties of Optical Quasars
We present the ISO far-IR photometry of a complete sub-sample of optically
selected bright quasars belonging to two complete surveys selected through
multicolour (U,B,V,R,I) techniques. The ISOPHOT camera on board of the ISO
Satellite was used to target these quasars at wavelengths of 7.3, 11.5, 60, 100
and 160 micron. Almost two thirds of the objects were detected at least in one
ISOPHOT band. The detection rate is independent of the source redshift, very
likely due to the negative K-correction of the far-IR thermal emission. More
than a half of the optically selected QSOs show significant emission between 4
and 100 micron in the quasar rest-frame. These fluxes have a very likely
thermal origin, although in a few objects an additional contribution from a
non-thermal component is plausible in the long wavelength bands. In a
colour-colour diagram these objects span a wide range of properties from
AGN-dominated to ULIRG-like. The far-IR composite spectrum of the quasar
population presents a broad far-IR bump between 10 and 30 micron and a sharp
drop at wavelengths greater than 100 micron in the quasar restframe. The amount
of energy emitted in the far-IR, is on average a few times larger than that
emitted in the blue and the ratio L(FIR)/L(B) increases with the bolometric
luminosity. Objects with fainter blue magnitudes have larger ratios between the
far-IR (wavelengths > 60 micron) fluxes and the blue band flux, which is
attributed to extinction by dust around the central source. No relation between
the blue absolute magnitude and the dust colour temperature is seen, suggesting
that the dominant source of FIR energy could be linked to a concurrent
starburst rather than to gravitational energy produced by the central engine.Comment: Astronomical Journal, in pres
Ising Spin Glass in a Transverse Magnetic Field
We study the three-dimensional quantum Ising spin glass in a transverse
magnetic field following the evolution of the bond probability distribution
under Renormalisation Group transformations. The phase diagram (critical
temperature {\em vs} transverse field ) we obtain shows a finite
slope near , in contrast with the infinite slope for the pure case. Our
results compare very well with the experimental data recently obtained for the
dipolar Ising spin glass LiHoYF, in a transverse field.
This indicates that this system is more apropriately described by a model with
short range interactions than by an equivalent Sherrington-Kirkpatrick model in
a transverse field.Comment: 7 pages, RevTeX3, Nota Cientifica PUC-Rio 23/9
Presymplectic current and the inverse problem of the calculus of variations
The inverse problem of the calculus of variations asks whether a given system
of partial differential equations (PDEs) admits a variational formulation. We
show that the existence of a presymplectic form in the variational bicomplex,
when horizontally closed on solutions, allows us to construct a variational
formulation for a subsystem of the given PDE. No constraints on the
differential order or number of dependent or independent variables are assumed.
The proof follows a recent observation of Bridges, Hydon and Lawson and
generalizes an older result of Henneaux from ordinary differential equations
(ODEs) to PDEs. Uniqueness of the variational formulation is also discussed.Comment: v2: 17 pages, no figures, BibTeX; minor corrections, close to
published versio
Phase Transitions of the Flux Line Lattice in High-Temperature Superconductors with Weak Columnar and Point Disorder
We study the effects of weak columnar and point disorder on the
vortex-lattice phase transitions in high temperature superconductors. The
combined effect of thermal fluctuations and of quenched disorder is
investigated using a simplified cage model. For columnar disorder the problem
maps into a quantum particle in a harmonic + random potential. We use the
variational approximation to show that columnar and point disorder have
opposite effect on the position of the melting line as observed experimentally.
Replica symmetry breaking plays a role at the transition into a vortex glass at
low temperatures.Comment: 4 pages in 2 columns format + 2 eps figs included, uses RevTeX and
multicol.st
Solvable model of a polymer in random media with long ranged disorder correlations
We present an exactly solvable model of a Gaussian (flexible) polymer chain
in a quenched random medium. This is the case when the random medium obeys very
long range quadratic correlations. The model is solved in spatial
dimensions using the replica method, and practically all the physical
properties of the chain can be found. In particular the difference between the
behavior of a chain that is free to move and a chain with one end fixed is
elucidated. The interesting finding is that a chain that is free to move in a
quadratically correlated random potential behaves like a free chain with , where is the end to end distance and is the length of the
chain, whereas for a chain anchored at one end . The exact
results are found to agree with an alternative numerical solution in
dimensions. The crossover from long ranged to short ranged correlations of the
disorder is also explored.Comment: REVTeX, 28 pages, 12 figures in eps forma
- …