54 research outputs found

    Tumour necrosis factor gene polymorphism: a predictive factor for the development of post-transplant lymphoproliferative disease

    Get PDF
    Epstein–Barr virus-positive post-transplant lymphoproliferative disease (PTLD) is a potentially lethal complication of iatrogenic immunosupression after transplantation. Predicting the development of PTLD allowing early and effective intervention is therefore of importance. Polymorphisms within cytokine genes are implicated in susceptibility to, and progression of, disease however the published data are often conflicting. We undertook investigation of polymorphic alleles within cytokine genes in PTLD and non-PTLD transplant cohorts to determine risk factors for disease. <br/> Methods: SSP-PCR was used to analyse single nucleotide polymorphism within tumour necrosis factor (TNF)-α, interleukin- 1, -6, -10 and lymphotoxin-α genes. The TNF-α levels were measured by standard enzyme-linked immuno-absorbant assay. <br/> Results: We show an association between variant alleles within the TNF-α promoter (−1031C (<i>P</i>=0.005)); −863A (<i>P</i>=0.0001) and TNF receptor I promoter regions (−201T (<i>P</i>=0.02)); −1135C (<i>P</i>=0.03) with the development of PTLD. We also show an association with TNF-α promoter haplotypes with haplotype-3 significantly increased (<i>P</i>=0.0001) and haplotype-1 decreased (P=0.02) in PTLD patients compared to transplant controls. Furthermore, we show a significant increase (<i>P</i>=0.02) in the level of TNF-α in PTLD patient plasma (range 0–97.97 pg ml<sup>−1</sup>) compared to transplant controls (0–8.147 pg ml<sup>−1</sup>), with the highest levels found in individuals carrying the variant alleles. <br/> Conclusion: We suggest that genetic variation within TNF-α loci and the level of plasma cytokine could be used as a predictive risk factor for the development of PTLD

    Genome-wide meta-analysis reveals shared new loci in systemic seropositive rheumatic diseases

    Get PDF
    OBJECTIVE: Immune-mediated inflammatory diseases (IMIDs) are heterogeneous and complex conditions with overlapping clinical symptoms and elevated familial aggregation, which suggests the existence of a shared genetic component. In order to identify this genetic background in a systematic fashion, we performed the first cross-disease genome-wide meta-analysis in systemic seropositive rheumatic diseases, namely, systemic sclerosis, systemic lupus erythematosus, rheumatoid arthritis and idiopathic inflammatory myopathies. METHODS: We meta-analysed ~6.5 million single nucleotide polymorphisms in 11 678 cases and 19 704 non-affected controls of European descent populations. The functional roles of the associated variants were interrogated using publicly available databases. RESULTS: Our analysis revealed five shared genome-wide significant independent loci that had not been previously associated with these diseases: NAB1, KPNA4-ARL14, DGQK, LIMK1 and PRR12. All of these loci are related with immune processes such as interferon and epidermal growth factor signalling, response to methotrexate, cytoskeleton dynamics and coagulation cascade. Remarkably, several of the associated loci are known key players in autoimmunity, which supports the validity of our results. All the associated variants showed significant functional enrichment in DNase hypersensitivity sites, chromatin states and histone marks in relevant immune cells, including shared expression quantitative trait loci. Additionally, our results were significantly enriched in drugs that are being tested for the treatment of the diseases under study. CONCLUSIONS: We have identified shared new risk loci with functional value across diseases and pinpoint new potential candidate loci that could be further investigated. Our results highlight the potential of drug repositioning among related systemic seropositive rheumatic IMIDs
    corecore