2 research outputs found

    Variational Worldline Approximation for the Relativistic Two-Body Bound State in a Scalar Model

    Full text link
    We use the worldline representation of field theory together with a variational approximation to determine the lowest bound state in the scalar Wick-Cutkosky model where two equal-mass constituents interact via the exchange of mesons. Self-energy and vertex corrections are included approximately in a consistent way as well as crossed diagrams. Only vacuum-polarization effects of the heavy particles are neglected. In a path integral description of an appropriate current-current correlator an effective, retarded action is obtained by integrating out the meson field. As in the polaron problem we employ a quadratic trial action with variational functions to describe retardation and binding effects through multiple meson exchange.The variational equations for these functions are derived, discussed qualitatively and solved numerically. We compare our results with the ones from traditional approaches based on the Bethe-Salpeter equation and find an enhanced binding contrary to some claims in the literature. For weak coupling this is worked out analytically and compared with results from effective field theories. However, the well-known instability of the model, which usually is ignored, now appears at smaller coupling constants than in the one-body case and even when self-energy and vertex corrections are turned off. This induced instability is investigated analytically and the width of the bound state above the critical coupling is estimated.Comment: 62 pages, 7 figures, FBS style, published versio

    Soliton Models of Hadrons

    No full text
    corecore