2,230 research outputs found

    Effect of Magnetization Inhomogeneity on Magnetic Microtraps for Atoms

    Get PDF
    We report on the origin of fragmentation of ultracold atoms observed on a permanent magnetic film atom chip. A novel technique is used to characterize small spatial variations of the magnetic field near the film surface using radio frequency spectroscopy of the trapped atoms. Direct observations indicate the fragmentation is due to a corrugation of the magnetic potential caused by long range inhomogeneity in the film magnetization. A model which takes into account two-dimensional variations of the film magnetization is consistent with the observations.Comment: 4 pages, 4 figure

    Condensate splitting in an asymmetric double well for atom chip based sensors

    Full text link
    We report on the adiabatic splitting of a BEC of 87^{87}Rb atoms by an asymmetric double-well potential located above the edge of a perpendicularly magnetized TbGdFeCo film atom chip. By controlling the barrier height and double-well asymmetry the sensitivity of the axial splitting process is investigated through observation of the fractional atom distribution between the left and right wells. This process constitutes a novel sensor for which we infer a single shot sensitivity to gravity fields of δg/g2×104\delta g/g\approx2\times10^{-4}. From a simple analytic model we propose improvements to chip-based gravity detectors using this demonstrated methodology.Comment: 4 pages, 5 figure

    Asymmetric double-well potential for single atom interferometry

    Full text link
    We consider the evolution of a single-atom wavefunction in a time-dependent double-well interferometer in the presence of a spatially asymmetric potential. We examine a case where a single trapping potential is split into an asymmetric double well and then recombined again. The interferometer involves a measurement of the first excited state population as a sensitive measure of the asymmetric potential. Based on a two-mode approximation a Bloch vector model provides a simple and satisfactory description of the dynamical evolution. We discuss the roles of adiabaticity and asymmetry in the double-well interferometer. The Bloch model allows us to account for the effects of asymmetry on the excited state population throughout the interferometric process and to choose the appropriate splitting, holding and recombination periods in order to maximize the output signal. We also compare the outcomes of the Bloch vector model with the results of numerical simulations of the multi-state time-dependent Schroedinger equation.Comment: 9 pages, 6 figure

    Incoherent pion photoproduction on the deuteron in the first resonance region

    Get PDF
    Incoherent pion photoproduction on the deuteron is studied in the first resonance region. The unpolarized cross section, the beam asymmetry, and the vector and tensor target asymmetries are calculated in the framework of a diagrammatic approach. Pole diagrams and one-loop diagrams with NNNN scattering in the final state are taken into account. An elementary operator for pion photoproduction on the nucleon is taken in various on-shell forms and calculated using the SAID and MAID multipole analyses. Model dependence of the obtained results is discussed in some detail. A comparison with predictions of other works is given. Although a reasonable description of many available experimental data on the unpolarized total and differential cross sections and photon asymmetry has been achieved, in some cases a significant disagreement between the theory and experiment has been found. Invoking known information on the reactions γdπ0d\gamma d\to\pi^0 d and γdnp\gamma d\to np we predict the total photoabsorption cross section for deuterium. We find that our values strongly overestimate experimental data in the vicinity of the Δ\Delta peak.Comment: 22 pages, 23 figure

    Superconducting and Normal State Properties of Heavily Hole-Doped Diamond

    Full text link
    We report measurements of the specific heat, Hall effect, upper critical field and resistivity on bulk, B-doped diamond prepared by reacting amorphous B and graphite under high-pressure/high-temperature conditions. These experiments establish unambiguous evidence for bulk superconductivity and provide a consistent set of materials parameters that favor a conventional, weak coupling electron-phonon interpretation of the superconducting mechanism at high hole doping.Comment: 10 pages, 3 figure

    Higher twists in polarized DIS and the size of the constituent quark

    Full text link
    The spontaneous breaking of chiral symmetry implies the presence of a short-distance scale in the QCD vacuum, which phenomenologically may be associated with the "size" of the constituent quark, rho ~ 0.3 fm. We discuss the role of this scale in the matrix elements of the twist-4 and 3 quark-gluon operators determining the leading power (1/Q^2-) corrections to the moments of the nucleon spin structure functions. We argue that the flavor-nonsinglet twist-4 matrix element, f_2^{u - d}, has a sizable negative value of the order rho^{-2}, due to the presence of sea quarks with virtualities ~ rho^{-2} in the proton wave function. The twist-3 matrix element, d_2, is not related to the scale rho^{-2}. Our arguments support the results of previous calculations of the matrix elements in the instanton vacuum model. We show that this qualitative picture is in agreement with the phenomenological higher-twist correction extracted from an NLO QCD fit to the world data on g_1^p and g_1^n, which include recent data from the Jefferson Lab Hall A and COMPASS experiments. We comment on the implications of the short-distance scale rho for quark-hadron duality and the x-dependence of higher-twist contributions.Comment: 8 pages, 4 figure

    Freezing-out of heavy isotopes of Kr

    Full text link
    The separation of isotopes of natural Krypton at the gas-liquid and liquid-solid phase interfaces was studied under nonequilibrium conditions using a cryogenic cell and mass spectrometry. The formation of condensate upon cooling Kr from the ambient temperature begins at an equilibrium temperature, which corresponds to the partial pressure of the dominant isotope 84Kr, and is accompanied by depletion of the gas phase 84Kr with a separation coefficient of ~0.92; but the isotopic composition returns to the original under conditions close to equilibrium. The formation of a solid phase near the freezing point is accompanied by depletion of the gas phase by heavy isotopes. The separation coefficients 86Kr and 84Kr are ~2 and ~12, respectively, when ~3.2% of the atoms pass into the solid phase. The solid phase with its fraction below 8.8%, 5.8% and 5.7% does not contain 80Kr, 82Kr and 83Kr with separation coefficients above ~90, ~110 and ~70, respectively, to compensate for the enrichment of the gas and liquid phases. Pressure-selective condensation can be used to separate components with close boiling points when distillation and temperature-selective condensation methods are ineffective, and freezing-out of heavy isotopes can be used to enrich elements with practically important isotopes.Comment: 11 pages; 3 Figures; 3 Tables; 26 Reference
    corecore