18 research outputs found

    Schiff Theorem Revisited

    Full text link
    We carefully rederive the Schiff theorem and prove that the usual expression of the Schiff moment operator is correct and should be applied for calculations of atomic electric dipole moments. The recently discussed corrections to the definition of the Schiff moment are absent.Comment: 6 page

    Schiff moment of the Mercury nucleus and the proton dipole moment

    Full text link
    We calculated the contribution of internal nucleon electric dipole moments to the Schiff moment of 199^{199}Hg. The contribution of the proton electric dipole moment was obtained via core polarization effects that were treated in the framework of random phase approximation with effective residual forces. We derived a new upper bound ∣dp∣<5.4×10−24e⋅|d_p|< 5.4\times 10^{-24} e\cdotcm of the proton electric dipole moment.Comment: 4 pages, 2 figures, RevTex

    Black hole uniqueness theorems and new thermodynamic identities in eleven dimensional supergravity

    Full text link
    We consider stationary, non-extremal black holes in 11-dimensional supergravity having isometry group R×U(1)8\mathbb{R} \times U(1)^8. We prove that such a black hole is uniquely specified by its angular momenta, its electric charges associated with the various 7-cycles in the manifold, together with certain moduli and vector valued winding numbers characterizing the topological nature of the spacetime and group action. We furthermore establish interesting, non-trivial, relations between the thermodynamic quantities associated with the black hole. These relations are shown to be a consequence of the hidden E8(+8)E_{8(+8)} symmetry in this sector of the solution space, and are distinct from the usual "Smarr-type" formulas that can be derived from the first law of black hole mechanics. We also derive the "physical process" version of this first law applicable to a general stationary black hole spacetime without any symmetry assumptions other than stationarity, allowing in particular arbitrary horizon topologies. The work terms in the first law exhibit the topology of the horizon via the intersection numbers between cycles of various dimensions.Comment: 50pp, 3 figures, v2: references added, correction in appendix B, conclusions added, v3: reference section edited, typos removed, minor changes in appendix

    Black hole instabilities and local Penrose inequalities

    Full text link
    Various higher-dimensional black holes have been shown to be unstable by studying linearized gravitational perturbations. A simpler method for demonstrating instability is to find initial data that describes a small perturbation of the black hole and violates a Penrose inequality. An easy way to construct initial data is by conformal rescaling of the unperturbed black hole initial data. For a compactified black string, we construct initial data which violates the inequality almost exactly where the Gregory-Laflamme instability appears. We then use the method to confirm the existence of the "ultraspinning" instability of Myers-Perry black holes. Finally we study black rings. We show that "fat" black rings are unstable. We find no evidence of any rotationally symmetric instability of "thin" black rings.Comment: 35 pages, 12 figures. v2: typos corrected, matches published versio

    Nuclear Structure Aspects of Neutrinoless Double- β

    No full text
    corecore