655 research outputs found

    The effect of asymmetric disorder on the diffusion in arbitrary networks

    Full text link
    Considering diffusion in the presence of asymmetric disorder, an exact relationship between the strength of weak disorder and the electric resistance of the corresponding resistor network is revealed, which is valid in arbitrary networks. This implies that the dynamics are stable against weak asymmetric disorder if the resistance exponent ζ\zeta of the network is negative. In the case of ζ>0\zeta>0, numerical analyses of the mean first-passage time τ\tau on various fractal lattices show that the logarithmic scaling of τ\tau with the distance ll, lnτlψ\ln\tau\sim l^{\psi}, is a general rule, characterized by a new dynamical exponent ψ\psi of the underlying lattice.Comment: 5 pages, 4 figure

    Effective target arrangement in a deterministic scale-free graph

    Full text link
    We study the random walk problem on a deterministic scale-free network, in the presence of a set of static, identical targets; due to the strong inhomogeneity of the underlying structure the mean first-passage time (MFPT), meant as a measure of transport efficiency, is expected to depend sensitively on the position of targets. We consider several spatial arrangements for targets and we calculate, mainly rigorously, the related MFPT, where the average is taken over all possible starting points and over all possible paths. For all the cases studied, the MFPT asymptotically scales like N^{theta}, being N the volume of the substrate and theta ranging from (1 - log 2/log3), for central target(s), to 1, for a single peripheral target.Comment: 8 pages, 5 figure

    Solution of an infection model near threshold

    Full text link
    We study the Susceptible-Infected-Recovered model of epidemics in the vicinity of the threshold infectivity. We derive the distribution of total outbreak size in the limit of large population size NN. This is accomplished by mapping the problem to the first passage time of a random walker subject to a drift that increases linearly with time. We recover the scaling results of Ben-Naim and Krapivsky that the effective maximal size of the outbreak scales as N2/3N^{2/3}, with the average scaling as N1/3N^{1/3}, with an explicit form for the scaling function

    Citation Statistics from 110 Years of Physical Review

    Full text link
    Publicly available data reveal long-term systematic features about citation statistics and how papers are referenced. The data also tell fascinating citation histories of individual articles.Comment: This is esssentially identical to the article that appeared in the June 2005 issue of Physics Toda

    Freezing and Slow Evolution in a Constrained Opinion Dynamics Model

    Full text link
    We study opinion formation in a population that consists of leftists, centrists, and rightist. In an interaction between neighboring agents, a centrist and a leftist can become both centrists or leftists (and similarly for a centrist and a rightist). In contrast, leftists and rightists do not affect each other. The initial density of centrists rho_0 controls the evolution. With probability rho_0 the system reaches a centrist consensus, while with probability 1-rho_0 a frozen population of leftists and rightists results. In one dimension, we determine this frozen state and the opinion dynamics by mapping the system onto a spin-1 Ising model with zero-temperature Glauber kinetics. In the frozen state, the length distribution of single-opinion domains has an algebraic small-size tail x^{-2(1-psi)} and the average domain size grows as L^{2*psi}, where L is the system length. The approach to this frozen state is governed by a t^{-psi} long-time tail with psi-->2*rho_0/pi as rho_0-->0.Comment: 4 pages, 6 figures, 2-column revtex4 format, for submission to J. Phys. A. Revision contains lots of stylistic changes and 1 new result; the main conclusions are the sam

    Hopping Conduction and Bacteria: Transport in Disordered Reaction-Diffusion Systems

    Full text link
    We report some basic results regarding transport in disordered reaction-diffusion systems with birth (A->2A), death (A->0), and binary competition (2A->A) processes. We consider a model in which the growth process is only allowed to take place in certain areas--"oases"--while the rest of space--the "desert"--is hostile to growth. In the limit of low oasis density, transport is mediated through rare "hopping" events, necessitating the inclusion of discreteness effects in the model. By first considering transport between two oases, we are able to derive an approximate expression for the average time taken for a population to traverse a disordered medium.Comment: 4 pages, 2 figure

    Effect of antiferromagnetic exchange interactions on the Glauber dynamics of one-dimensional Ising models

    Full text link
    We study the effect of antiferromagnetic interactions on the single spin-flip Glauber dynamics of two different one-dimensional (1D) Ising models with spin ±1\pm 1. The first model is an Ising chain with antiferromagnetic exchange interaction limited to nearest neighbors and subject to an oscillating magnetic field. The system of master equations describing the time evolution of sublattice magnetizations can easily be solved within a linear field approximation and a long time limit. Resonant behavior of the magnetization as a function of temperature (stochastic resonance) is found, at low frequency, only when spins on opposite sublattices are uncompensated owing to different gyromagnetic factors (i.e., in the presence of a ferrimagnetic short range order). The second model is the axial next-nearest neighbor Ising (ANNNI) chain, where an antiferromagnetic exchange between next-nearest neighbors (nnn) is assumed to compete with a nearest-neighbor (nn) exchange interaction of either sign. The long time response of the model to a weak, oscillating magnetic field is investigated in the framework of a decoupling approximation for three-spin correlation functions, which is required to close the system of master equations. The calculation, within such an approximate theoretical scheme, of the dynamic critical exponent z, defined as 1/τ(1/ξ)z{1/\tau} \approx ({1/ {\xi}})^z (where \tau is the longest relaxation time and \xi is the correlation length of the chain), suggests that the T=0 single spin-flip Glauber dynamics of the ANNNI chain is in a different universality class than that of the unfrustrated Ising chain.Comment: 5 figures. Phys. Rev. B (accepted July 12, 2007

    Exact calculations of first-passage quantities on recursive networks

    Full text link
    We present general methods to exactly calculate mean-first passage quantities on self-similar networks defined recursively. In particular, we calculate the mean first-passage time and the splitting probabilities associated to a source and one or several targets; averaged quantities over a given set of sources (e.g., same-connectivity nodes) are also derived. The exact estimate of such quantities highlights the dependency of first-passage processes with respect to the source-target distance, which has recently revealed to be a key parameter to characterize transport in complex media. We explicitly perform calculations for different classes of recursive networks (finitely ramified fractals, scale-free (trans)fractals, non-fractals, mixtures between fractals and non-fractals, non-decimable hierarchical graphs) of arbitrary size. Our approach unifies and significantly extends the available results in the field.Comment: 16 pages, 10 figure

    Quantum random walk : effect of quenching

    Full text link
    We study the effect of quenching on a discrete quantum random walk by removing a detector placed at a position xDx_D abruptly at time tRt_R from its path. The results show that this may lead to an enhancement of the occurrence probability at xDx_D provided the time of removal tR<tRlimt_R < t_{R}^{lim} where tRlimt_{R}^{lim} scales as xD2x_D{^2}. The ratio of the occurrence probabilities for a quenched walker (tR0t_R \neq 0) and free walker (tR=0t_R =0) shows that it scales as 1/tR1/t_R at large values of tRt_R independent of xDx_D. On the other hand if tRt_R is fixed this ratio varies as xD2x_{D}^{2} for small xDx_D. The results are compared to the classical case. We also calculate the correlations as functions of both time and position.Comment: 5 pages, 6 figures, accepted version in PR

    Perturbation theory for the one-dimensional trapping reaction

    Full text link
    We consider the survival probability of a particle in the presence of a finite number of diffusing traps in one dimension. Since the general solution for this quantity is not known when the number of traps is greater than two, we devise a perturbation series expansion in the diffusion constant of the particle. We calculate the persistence exponent associated with the particle's survival probability to second order and find that it is characterised by the asymmetry in the number of traps initially positioned on each side of the particle.Comment: 18 pages, no figures. Uses IOP Latex clas
    corecore